000048506 001__ 48506 000048506 005__ 20240712100902.0 000048506 0247_ $$2DOI$$a10.1029/2005GL025159 000048506 0247_ $$2WOS$$aWOS:000236269100004 000048506 0247_ $$2Handle$$a2128/20813 000048506 037__ $$aPreJuSER-48506 000048506 041__ $$aeng 000048506 082__ $$a550 000048506 084__ $$2WoS$$aGeosciences, Multidisciplinary 000048506 1001_ $$0P:(DE-HGF)0$$aVoigt, C.$$b0 000048506 245__ $$aNitric acid uptake in cirrus clouds 000048506 260__ $$aWashington, DC$$bAmerican Geophysical Union$$c2006 000048506 300__ $$aL05803 000048506 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000048506 3367_ $$2DataCite$$aOutput Types/Journal article 000048506 3367_ $$00$$2EndNote$$aJournal Article 000048506 3367_ $$2BibTeX$$aARTICLE 000048506 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000048506 3367_ $$2DRIVER$$aarticle 000048506 440_0 $$02249$$aGeophysical Research Letters$$v33$$x0094-8276 000048506 500__ $$aRecord converted from VDB: 12.11.2012 000048506 520__ $$a[1] Uptake of nitric acid (HNO3) in Arctic cirrus ice crystals was observed on 11 February 2003 by in-situ instruments onboard the M55 Geophysica aircraft. The cirrus cloud with a mean ice water content of 5.4 mg m(-3) covered northern Scandinavia for several hours and extended up to the thermal tropopause at 12.3 km. Within the cirrus region, on average 9% of the total HNO3 measured as reactive nitrogen (NOy) is present in ice particles, increasing to 19% at temperatures below 205 K. In contrast to previous studies, we discuss the HNO3 uptake in ice in terms of HNO3/H2O molar ratios in ice crystals. The HNO3 content of the ice increases with increasing gas phase HNO3 concentrations and decreasing temperatures. Enhanced uptake of HNO3 in ice and heterogeneous chemistry on cold cirrus clouds may disturb the upper tropospheric ozone budget. 000048506 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0 000048506 588__ $$aDataset connected to Web of Science 000048506 650_7 $$2WoSType$$aJ 000048506 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b1 000048506 7001_ $$0P:(DE-HGF)0$$aZiereis, H.$$b2 000048506 7001_ $$0P:(DE-HGF)0$$aKärcher, B.$$b3 000048506 7001_ $$0P:(DE-HGF)0$$aLuo, B. P.$$b4 000048506 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b5$$uFZJ 000048506 7001_ $$0P:(DE-Juel1)129131$$aKrämer, M.$$b6$$uFZJ 000048506 7001_ $$0P:(DE-HGF)0$$aPopp, P. J.$$b7 000048506 7001_ $$0P:(DE-HGF)0$$aIrie, H.$$b8 000048506 7001_ $$0P:(DE-HGF)0$$aKondo, Y.$$b9 000048506 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2005GL025159$$gVol. 33, p. L05803$$pL05803$$q33<L05803$$tGeophysical research letters$$v33$$x0094-8276$$y2006 000048506 8567_ $$uhttp://dx.doi.org/10.1029/2005GL025159 000048506 8564_ $$uhttps://juser.fz-juelich.de/record/48506/files/2005GL025159.pdf$$yOpenAccess 000048506 8564_ $$uhttps://juser.fz-juelich.de/record/48506/files/2005GL025159.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000048506 909CO $$ooai:juser.fz-juelich.de:48506$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000048506 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23 000048506 9141_ $$y2006 000048506 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000048506 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000048506 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0 000048506 970__ $$aVDB:(DE-Juel1)76262 000048506 9801_ $$aFullTexts 000048506 980__ $$aVDB 000048506 980__ $$aConvertedRecord 000048506 980__ $$ajournal 000048506 980__ $$aI:(DE-Juel1)IEK-7-20101013 000048506 980__ $$aUNRESTRICTED 000048506 981__ $$aI:(DE-Juel1)ICE-4-20101013 000048506 981__ $$aI:(DE-Juel1)IEK-7-20101013