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Abstract

New compact finite difference schemes of sixth order are derived for the three dimensional
Helmholtz equation, ∆u − κ2u = −f . Convergence characteristics and accuracy are com-
pared and a truncation error analysis is presented for a broad range of κ-values.
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1 Introduction

In a variety of physical problems, the solution of a Helmholtz type equation

∆u(r) − κ2u(r) = Λu(r) = −f(r) , r ∈ Ω (1)

with Dirichlet boundary conditions

u(rb) = u0(rb) , rb ∈ ∂Ω (2)

is required, where u0 is a predefined value of the field solution on the domain boundary, rb.
For further purposes, the Helmholtz operator Λ = ∆ − κ2 was introduced. The differen-
tial equation appears in a natural way in the solution of the wave equation, in which case
κ = iω/c0 is the wavenumber in a dispersive medium (ω is the wave frequency and c0 the
speed of light or the speed of sound) or in the solution of the linearised Poisson-Boltzmann
equation, in which case κ = q

√

8πβc/ǫ (q is the charge of an ion, c the ionic concentration,
ǫ the dielectric constant of the solvent and β the inverse thermal energy). Due to its im-
portance in this area of research, great effort has been spent to develop fast and accurate
methods for solution. In Ref. [1] fourth and sixth order methods were studied. Boisvert for-
mulated extensions of sixth order accuracy for the HODIE method [2]. Alternative schemes
were presented by Manohar and Stephenson [3] for fourth and sixth order. Harari and
Turkel also presented various fourth order methods for time-harmonic wave propagation [4].
Furthermore, fourth order methods for the Helmholtz equation with constant coefficients on
uniform grids were presented in Ref. [5].

In the present paper new sixth order schemes are developed for the finite difference
representation of the Laplace operator appearing in the Helmholtz equation with constant
coefficients. It partially extends the schemes developed recently for the Poisson equation [6].
One scheme (L6c) is based on a reformulation of higher derivatives, appearing in the Taylor
expansion of the discrete form of the field. This representation has the advantage of being
fully compact in the case of a differentiable source function f , i.e. it needs only information
of the nearest neighbour grid points. Two other sixth order approximations (LP04, LP22)
follow from a Padé approximation of the high order finite difference expansion for the Laplace
operator. Although these schemes are not fully compact, i.e. they need also next nearest
grid points for the solution, it is found that they have better convergence characteristics and
a better error reduction for large values of κ. In practical applications, different schemes
may be combined, i.e. using good converging schemes in the domain interior and a fully
compact scheme on the boundary. In such a way it is also straight forward to incorporate
these schemes into a multigrid algorithm. The new finite difference schemes are compared
to the sixth order scheme (L3bl) emerging naturally from the finite difference expansion of
the Laplace operator.
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2 Theory

A straight forward implementation of high order formulations for finite difference schemes
is found from the expansion [7]

∂2u

∂α2

∣

∣

∣

∣

α=ihα

=
4

h2
α

[

sinh−1

(

δα

2

)]2

(3)

=
1

h2
α

δ2
α

{

1 − 1

12
δ2
α +

1

90
δ4
α − 1

560
δ6
α ± . . .

}

ui,j,k (4)

A sixth order stencil for the Helmholtz equation is then simply found as

Λ3bl(000) : −49

6

1

h2
− κ2

Λ3bl(π(1, 0, 0)) :
3

2

1

h2

Λ3bl(π(2, 0, 0)) : − 3

20

1

h2

Λ3bl(π(3, 0, 0)) :
1

90

1

h2

(5)

where π(i, j, k) means all permutations of the (±i,±j,±k) arguments. The unpleasant
fact of this implementation is that it is a rather extended scheme. For Dirichlet boundary
conditions, three layers of grid points have to be prescribed (denoted by the index 3bl).

The aim here is to derive sixth order compact formulations of the finite difference ap-
proximation to Eq.1. A compact form, needing only one boundary layer is derived from a
reformulation of higher mixed derivatives. Two other forms, needing two boundary layers,
are based on a Padé approximation

Pm,n[∂2
αu] =

m
∑

k=0

akxk
α

1 +
n
∑

k=1

bkxk
α

(6)

for different sets of m, n.

2.1 Compact reformulation of the Helmholtz equation

In order to find an appropriate description, a Taylor series expansion is performed for the de-
scritized field uh ≡ ui,j,k, where the grid spacing is h. In one spatial direction the expansions
in positive and negative direction are

ui−1,j,k = ui,j,k − h∂xu +
h2

2
∂2

xu − h3

6
∂3

xu +
h4

24
∂4

xu − h5

120
∂5

xu +
h6

720
∂6

xu + O(h7) (7)

ui+1,j,k = ui,j,k + h∂xu +
h2

2
∂2

xu +
h3

6
∂3

xu +
h4

24
∂4

xu +
h5

120
∂5

xu +
h6

720
∂6

xu + O(h7) (8)
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Adding the two expansions and solving for the second derivative gives

∂2
xu =

ui−1,j,k − 2ui,j,k + ui+1,j,k

h2
− h2

12
∂4

xu − h4

360
∂6

xu + O(h6) (9)

Therefore the Laplace operator can be approximated in sixth order as

∆u =
1

h2
(δ2

x + δ2
y + δ2

z)u − 1

12
{∂4

x + ∂4
y + ∂4

z}u − h4

360
{∂6

x + ∂6
y + ∂6

z}u + O(h6) (10)

where δ2
xui,j,k ≡ (ui−1,j,k − 2ui,j,k + ui+1,j,k) was introduced. In the following “{.}“ is used

in combination with partial derivatives whereas “(.)“ is used with finite difference operators.
Eq.10 shows that a sixth order approximation is expressed in terms of derivatives of

order four and six of the potential field. The task is therefore to translate these derivatives
into compact finite difference operators of high order. These derivatives may be expressed
through multiple differentiations of Eq.1, i.e.

{∂4
x + ∂2

x∂2
y + ∂2

x∂2
z − κ2∂2

x} u = −∂2
xf (11)

{∂2
x∂2

y + ∂4
y + ∂2

y∂2
z − κ2∂2

y} u = −∂2
yf (12)

{∂2
x∂2

z + ∂2
y∂2

z + ∂4
z − κ2∂2

z} u = −∂2
zf (13)

from where the fourth derivatives are expressed as

{∂4
x +∂4

y +∂4
z} u = −{∂2

x +∂2
y +∂2

z} f −2{∂2
x∂2

y +∂2
x∂2

z +∂2
y∂2

z} u+κ2 {∂2
x +∂2

y +∂2
z} u (14)

In a similar way expressions for the sixth order and mixed derivatives are derived

{∂6
x + ∂6

y + ∂6
z}u = −{∂2

x∂4
y + ∂2

x∂4
z + ∂2

y∂4
x + ∂2

y∂4
z + ∂2

z∂4
x + ∂2

z∂4
y}u

+κ2{∂4
x + ∂4

y + ∂4
z}u − {∂4

x + ∂4
y + ∂4

z}f (15)

{∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
x∂4

z + ∂2
z∂4

x + ∂2
z∂4

y}u = −{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}f (16)

−3∂2
x∂2

y∂2
zu + κ2{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}u

Inserting Eqs.14, 16 into Eq.15 leads to

{∂6
x + ∂6

y + ∂6
z}u = −κ2{∂2

x + ∂2
y + ∂2

z}f + {∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}f − {∂4
x + ∂4

y + ∂4
z}f

+κ4{∂2
x + ∂2

y + ∂2
z}u − 3κ2{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}u + 3∂2

x∂2
y∂2

zu (17)

Therefore all derivatives of order four and six in the approximation for the Laplace operator,
Eq.10, are expressed in terms of combinations of second derivatives in the spatial directions.

Now the Helmholtz equation is written as a sixth order approximation

1

h2
(δ2

x + δ2
y + δ2

z)u − h2

12
{∂4

x + ∂4
y + ∂4

z}u − h4

360
{∂6

x + ∂6
y + ∂6

z}u − κ2u = −f (18)
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The expressions of the higher derivatives are inserted into this approximation, leading to

1

h2
(δ2

x + δ2
y + δ2

z)u

+
h2

12

[

{∂2
x + ∂2

y + ∂2
z}f + 2{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}u − κ2{∂2

x + ∂2
y + ∂2

z}u
]

+
h4

360

[

{∂4
x + ∂4

y + ∂4
z}f − {∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f + κ2 + {∂2

x + ∂2
y + ∂2

z}f

−κ4{∂2
x + ∂2

y + ∂2
z}u + 3κ2{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}u − 3∂2

x∂2
y∂2

zu
]

− κ2u = −f (19)

This can be reformulated to give

1

h2
(δ2

x + δ2
y + δ2

z)u +
h2

6

(

1 +
h2κ2

20

)

{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}u

− h4

120
∂2

x∂2
y∂2

zu − κ2

(

1 +
h2κ2

12
+

h4κ4

360

)

u

= −
(

1 +
h2κ2

12
+

h4κ4

360

)

f − h2

12

(

1 +
h2κ2

30

)

{∂2
x + ∂2

y + ∂2
z}f

+
h4

360
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f − h4

360
{∂4

x + ∂4
y + ∂4

z}f (20)

where the relation {∂2
x + ∂2

y + ∂2
z}u = κ2u − f was used. The next task is to construct

expressions for the finite difference approximations of sixth order for all derivatives of u.
These may be constructed again by Taylor expansion. Results are

∂2
x∂2

y∂2
zu =

1

h6
δ2
xδ2

yδ2
z (21)

{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}u =
1

h4
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)u

−h2

12
{∂2

x∂4
y + ∂2

x∂4
z + ∂2

y∂4
x + ∂2

y∂4
z + ∂2

z∂4
x + ∂2

z∂4
y}u

=
1

h4
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)u +

1

4h4
δ2
xδ2

yδ2
zu (22)

−h2κ2

12
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}u +

h2

12
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f

and therefore

{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}u =

(

1 +
h2κ2

12

)−1
[ 1

h4
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)u +

1

4h4
δ2
xδ2

yδ2
zu

+
h2

12
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f

]

(23)

Finally one arrives at the expression for the finite difference approximation of the Helmholtz
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equation

1

h2
(δ2

x + δ2
y + δ2

z)u +
1

6h2

(

1 +
h2κ2

20

)(

1 +
h2κ2

12

)−1

(δ2
xδ2

y + δ2
xδ2

z + δ2
yδ2

z)u

+
1

24h2

[

(

1 +
h2κ2

20

)(

1 +
h2κ2

12

)−1

− 1

5

]

δ2
xδ2

yδ2
zu − κ2

(

1 +
h2κ2

12
+

h4κ4

360

)

u

= −
(

1 +
h2κ2

12
+

h4κ4

360

)

f − h2

12

(

1 +
h2κ2

30

)

{∂2
x + ∂2

y + ∂2
z}f − h4

360
{∂4

x + ∂4
y + ∂4

z}f

−h4

72

[

(

1 +
h2κ2

20

)(

1 +
h2κ2

12

)−1

− 1

5

]

{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z}f (24)

Eq.24 may be simplified by expanding terms which contain the factor 1/(1 + h2κ2/12).
Keeping terms up to sixth order, this leads to

1

h2
(δ2

x + δ2
y + δ2

z)u +
1

6h2

(

1 − h2κ2

30

)

(δ2
xδ2

y + δ2
xδ2

z + δ2
yδ2

z)u

+
1

30h2
δ2
xδ2

yδ2
zu − κ2

(

1 +
h2κ2

12
+

h4κ4

360

)

u

= −
(

1 +
h2κ2

12
+

h4κ4

360

)

f − h2

12

(

1 +
h2κ2

30

)

{∂2
x + ∂2

y + ∂2
z}f − h4

360
{∂4

x + ∂4
y + ∂4

z}f

−h4

90
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f (25)

It is obvious from Eqs.24,25 that the finite difference operators, appearing on the left
hand side (lhs) are compact. However, on the right hand side (rhs) partial derivatives
of higher than second order appear. In cases, where the source function f is known and
differentiable, this scheme really provides a compact finite difference scheme. In case that
f is not differentiable or its analytical form is not known, one also has to approximate the
differential operators on the rhs. Since partial derivatives of fourth order cannot be simply
reduced to combinations of second order derivatives, this gives rise to the inclusion of next
nearest neighbour points in the finite difference scheme. The rhs of Eq.25 is thereby modified
to

−
(

1 +
h2κ2

12
+

h4κ4

360

)

f − h2

12

(

1 +
h2κ2

30

)

{∂2
x + ∂2

y + ∂2
z}f − h4

360
{∂4

x + ∂4
y + ∂4

z}f

−h4

90
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f ≡ Γ6c∂ff (26)

→ −
(

1 +
h2κ2

12
+

h4κ4

360

)

f − 1

12

(

1 +
h2κ2

30

)

(δ2
x + δ2

y + δ2
z)f

+
1

240

(

1 +
h2κ2

18

)

(δ4
x + δ4

y + δ4
z)f − 1

90
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)f ≡ Γ6cδff (27)

where the operators Γ6c∂f and Γ6cδf acting onto the source functions were introduced.
In general the present scheme is refered to as L6c. If it is necessary to distinguish between
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different cases, the numerical scheme which uses analytical derivatives of the source function
will be called henceforth L6c∂f , the one with finite differences L6cδf .

From Eq.25 and Eq.27 it is easy to obtain a finite difference scheme of fourth order, i.e.

1

h2
(δ2

x + δ2
y + δ2

z)u +
1

6h2
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)u − κ2

(

1 +
h2κ2

12

)

u

= −
(

1 +
h2κ2

12

)

f − h2

12
{∂2

x + ∂2
y + ∂2

z}f (28)

= −
(

1 +
h2κ2

12

)

f − h2

12
(δ2

x + δ2
y + δ2

z)f + O(h4) (29)

In order to simplify the programming of the scheme, also the stencil notation is given
here. The finite difference operator of the lhs is given as

Λ6c(000) : −64

15

1

h2

(

1 +
1

4
h2κ2 +

5

256
h4κ4 +

1

1536
h6κ6

)

Λ6c(π(1, 0, 0)) :
7

15

1

h2

(

1 +
h2κ2

21

)

Λ6c(π(1, 1, 0)) :
1

10

1

h2

(

1 − h2κ2

18

)

Λ6c(111) :
1

30

1

h2

(30)

Using finite difference approximations for the rhs of Eq.25 the operator Γ6cδf is given as

Γ6cδf (000) :
67

120

(

1 +
8

67
h2κ2 +

1

201
h4κ4

)

Γ6cδf (π(1, 0, 0)) :
1

18

(

1 +
h2κ2

20

)

Γ6cδf (π(1, 1, 0)) :
1

90

Γ6cδf (π(2, 0, 0)) : − 1

240

(31)

In the limiting case of κ → 0, Eq.1 is reduced to the Poisson equation. It comes out that
the finite difference approximation is

1

h2
(δ2

x + δ2
y + δ2

z)u +
1

6h2
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)u +

1

30h2
δ2
xδ2

yδ2
zu

= −f − h2

12
{∂2

x + ∂2
y + ∂2

z}f − h4

90
{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z}f

− h4

360
{∂4

x + ∂4
y + ∂4

z}f (32)

which is the same expression as was obtained in Ref.[8] for the Poisson equation (Note,
however, the wrong factor 1/180 in the third term of the rhs in that work).
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2.2 Padé approximation P0,4

A Padé approximation with m = 0, n = 4 of the second partial derivative is given as

(uαα)ijk =
1

h2
α

δ2
α

(

1 +
1

12
δ2
α − 1

240
δ4
α

)−1

(33)

=
1

h2
α

D−1
[0,4],α (34)

which leads to the discrete form of the Helmholtz equation
{

∑

α=x,y,z

1

h2
α

δ2
α D−1

[0,4],α − κ2

}

ui,j,k = −fi,j,k (35)

Both sides of Eq.35 can be multiplied by
∏

α=x,y,z D[0,4],α and since the operators D[0,4],α

commute, Eq.35 is transformed into
{

∑

α

1

h2
α

δ2
α D[0,4],β D[0,4],γ

}

ui,j,k−κ2

{

∏

α=x,y,z

D[0,4],α

}

ui,j,k = −
{

∏

α=x,y,z

D[0,4],α

}

fi,j,k

(36)
where {(β, γ) 6= α ∧ β 6= γ}. This is written as

{

1

h2
(δ2

x + δ2
y + δ2

z) +
1

6h2
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z) +

1

48h2
δ2
xδ2

yδ2
z (37)

− 1

240h2

(

δ2
x(δ4

y + δ4
z) + δ2

y(δ4
x + δ4

z) + δ2
z(δ4

x + δ4
y)
)

−κ2 − κ2

12
(δ2

x + δ2
y + δ2

z) − κ2

144
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)

+
κ2

240
(δ4

x + δ4
y + δ4

z)

}

ui,j,k

= −
{

1 +
1

12
(δ2

x + δ2
y + δ2

z) +
1

144
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z) − 1

240
(δ4

x + δ4
y + δ4

z)

}

fi,j,k

The stencil notation for the Helmholtz operator ΛP04 is then given by

ΛP04(000) : −58

15

1

h2
− 61

120
κ2

ΛP04(π(1, 0, 0)) :
3

10

1

h2
− 13

180
κ2

ΛP04(π(1, 1, 0)) :
19

120

1

h2
− 1

144
κ2

ΛP04(111) :
1

48

1

h2

ΛP04(π(2, 0, 0)) :
1

60

1

h2
+

1

240
κ2

ΛP04(π(1, 2, 0)) : − 1

240

1

h2

(38)
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and the ΓP04-operator, acting on the source function is given by

ΓP04(000) :
61

120

ΓP04(π(1, 0, 0)) :
13

180

ΓP04(π(1, 1, 0)) :
1

144

ΓP04(π(2, 0, 0)) : − 1

240

(39)

2.3 Padé approximation P2,2

A second Padé approximation is obtained with m = 2, n = 2 and can be written as

(uαα)i,j,k =
1

hα
δ2
αD

(1)
[2,2],α(D

(2)
[2,2],α)−1 (40)

with

D
(1)
[2,2],α = 1 +

1

20
δ2
α (41)

D
(2)
[2,2],α = 1 +

2

15
δ2
α (42)

A high order formulation of the discrete Helmholtz equation is then found as

{

∑

α

1

h2
α

δ2
α D

(1)
[2,2],α D

(2)
[2,2],β D

(2)
[2,2],γ

}

ui,j,k−κ2

{

∏

α

D
(2)
[2,2],α

}

ui,j,k = −
{

∏

α

D
(2)
[2,2],α

}

fi,j,k

(43)
As before the sum on the lhs is understood for {(β, γ) 6= α ∧ β 6= γ}. Keeping terms up to
sixth order in δ2

α on the lhs this expression is rewritten in terms of δ2
α as

{ 1

h2
(δ2

x + δ2
y + δ2

z) +
4

15h2
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z) +

1

20h2
(δ4

x + δ4
y + δ4

z) (44)

+
12

125h2
δ2
xδ2

yδ2
z +

1

150h2

(

δ2
x(δ4

y + δ4
z) + δ2

y(δ4
x + δ4

z) + δ2
z(δ4

x + δ4
y)
)

−κ2 − 2κ2

15
(δ2

x + δ2
y + δ2

z) − 4κ2

225
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)
}

ui,j,k

= −
{

1 +
2

15
(δ2

x + δ2
y + δ2

z) +
4

225
(δ2

xδ2
y + δ2

xδ2
z + δ2

yδ2
z)
}

fi,j,k
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The stencil notation for the Helmholtz operator ΛP22 is then given by

ΛP22(000) : −421

150

1

h2
− 31

75
κ2

ΛP22(π(1, 0, 0)) :
2

15

1

h2
− 14

225
κ2

ΛP22(π(1, 1, 0)) :
8

75

1

h2
− 4

225
κ2

ΛP22(111) :
4

75

1

h2

ΛP22(π(2, 0, 0)) :
7

300

1

h2

ΛP22(π(1, 2, 0)) :
1

150

1

h2

(45)

The ΓP22-operator, acting on the source function is given by

ΓP22(000) :
31

75

ΓP22(π(1, 0, 0)) :
14

225

ΓP22(π(1, 1, 0)) :
4

225

(46)

2.4 Combination of different schemes

It is obvious that the sixth order schemes may have problems at the domain boundaries. In
fact, using finite differences for the higher derivatives of the source function in L6c, Eq. 26,
one needs two boundary layers in order to evaluate them properly. This can be avoided when
the source function is differentiable and one does not need a finite difference prescription,
Eq. 26. The two Padé schemes suffer the same deficiency on the boundary. In this case
also the Λ-operators need information from the next nearest grid points, which introduces
problems at the boundaries.

For differentiable source functions, these problems may be avoided by a combination of
different solvers in the relaxation process. E.g. Padé approximations may be used in the
interior of the domain, while points close to the boundary are treated by L6c, leading to
the schemes LP04/6c∂f and LP22/6c∂f . Also combinations of L6c∂f and L6cδf are possible,
called L6cδf/6c∂f . In the case, where no analytically differentiable source functions exist, e.g.
stochastic distributions, one has to switch to asymmetric stencils of high order. The latter
case will be not considered here but the combinations L6cδf/6c∂f , LP04/6c∂f and LP22/6c∂f

will be examined in Sec. 3.

9



3 Results

3.1 Convergence and Accuracy

All four finite difference schemes, L3bl, L6c, LP22, LP04 were applied to different test cases
(cmp. Sec. 3.3). A standard Gauss-Seidel relaxtion scheme was applied for the iterations.
One measure for the convergence of the schemes is the ratio of residue norms

rc = lim
n→∞

‖r(n)‖
‖r(n−1)‖ (47)

where n is the iteration number and the residue norm is defined as the 2-norm

‖r(n)‖ =

√

1

N

∑

i,j,k

(

Λi,j,ku
(n)
i,j,k + fi,j,k

)2

(48)

and u
(n)
i,j,k is the value of the field after n iterations. This is of course an ideal representation

which does not take into account round-off errors, which finally lead for very large n to
a saturation in the reduction of the residuum. On the other hand the convergence may
also be measured by calculating the spectral radius ρ(C) of the iteration matrix C of the
numerical scheme. For large grids the latter method is however very demanding in memory
and is therefore not employed here. It was found however that for κ = 0 results obtained
from residuum norms and spectral radii agree very well on the smaller grids [6]. Of course,
the smaller rc the better the convergence. Convergence rates were calculated for various
values of κ by the residuum method. Since this method should give the same results as a
calculation of the spectral radius, which is independent of the problem at hand, also the
results for rc should be representative for any chosen problem with a specified value for κ.

In Fig. 1 results for rc are shown for the finite difference schemes applied on grids with
spacings h = 1/32 and h = 1/64. It is seen that for imaginary κ the convergence becomes
worse for all numerical schemes, leading to instabilities of the solution from κ ≈ i6. On
the other hand the convergence rate improves strongly when increasing κ to positive values.

-6 -4 -2 0 2 4 6 8 10
κ

0.92

0.94

0.96

0.98

1

|| 
r n ||

 / 
|| 

r n-
1 ||

 Λ
P22

 Λ
P04

 Λ
cc

 Λ
3bl h = 1/32

-6 -4 -2 0 2 4 6 8 10
κ

0.98

0.985

0.99

0.995

1

|| 
r n ||

 / 
|| 

r n-
1 ||

 Λ
P22

 Λ
P04

 Λ
cc

 Λ
3bl h = 1/64

Figure 1: Reduction factor of the residuum norm for operators
Λ3bl, Λ6c, ΛP04 and ΛP22 as function of the parameter κ (negative
values of κ represent imaginary values).
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λmin (×10−2)
κ Λ3bl Λ6c ΛP04 ΛP22

i5 1.271 0.425 0.389 0.298
i2 1.784 0.937 0.901 0.809
0 1.881 1.035 0.998 0.907
2 1.979 1.133 1.096 1.005
5 2.491 1.646 1.608 1.517

Table 1: Minimum eigenvalue λmin of the stencil matrices h2Λ3bl,
h2Λ6c, h2ΛP04 and h2ΛP22 determining the residuum reduction
in each iteration for Test Case 1 on a grid with h = 1/64.

This may be understood from the wave equation analogy, where an imaginary κ corresponds
to propagating waves while a real value of κ corresponds to evanescent waves. The latter
case gives rise to a very much smoother solution than the former case, leading to a better
and faster convergence.

From Fig. 1 it is clearly seen that the different schemes obey strong differences in con-
vergence characteristics. Best convergence is found for the Padé scheme ΛP22, while slowest
convergence is found for the scheme with largest extend, Λ3bl.

Another measure of convergence rate can be given in terms of the error norm ‖u(n)
h −

u
(ex)
h ‖, where u

(n)
h is the field solution after n iteration steps and u

(ex)
h is the exact solution

of the problem. For large n this gives the discretization error ‖ǫǫǫh‖. The error norm may be
estimated by [6]

‖u(n)
h − u

(ex)
h ‖ ≤ ‖ΛΛΛ−1

h r
(n)
h ‖ + ‖ǫǫǫh‖ (49)

≈ h2

|λmin|
‖r(n)

h ‖ + ‖ǫǫǫh‖ (50)

Here, λmin is the smallest eigenvalue of the stencil matrix h2ΛΛΛh. Therefore, the smaller
the eigenvalue λmin, the faster the convergence towards the discretization error. Values for
λmin for grids with h = 1/64 are shown in Table 1. Results for this estimate of the error
reduction are shown in Fig. 2 for the P [2, 2] scheme for different grid sizes and κ = 5, from
where a very good correspondence is found.

Another characteristic quantity of the stencils is the discritization error which is described
by the error norm ‖ǫǫǫh‖. This quantity is found empirically by solving test cases. As an
example, values for ‖ǫǫǫh‖ are shown in Table 2 for the stencils on a grid with mesh size
h = 1/64. As an interesting fact it is found that ‖ǫǫǫh‖ is reduced for all stencils with increasing
κ except for the scheme L6c. This behavior is illustrated also in Fig.1 where results for L6c

and LP22 are compared for a set of κ-values. This phenomenon can be explained by the
expansion of the operators in terms of h. As is shown in Appendix B this scheme has
an expansion, which depends on κ2. Therefore, with increasing κ, the discretization error
increases as well. This tendency is not that dramatic when considering imaginary values
for κ. This kind of κ-dependence of the discretization error makes it attractive to choose a
given finite difference scheme according to the value of κ. From an eigenvalue calculation
it is, however, obvious that for values κ > i

√
3 the Λ-operator becomes indefinite for which
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Figure 2: Convergence behavior of the solver LP22 towards the
discretization error ‖ǫǫǫh‖, applied to Test Case 1 with κ = 5 for
different grid sizes. Compared to the numerical results is the
model, Eq. 50, based on an eigenvalue calculation of the stencil
matrix ΛP22.

elliptic methods are not appropriate anymore. As is seen in Fig. 1 the value of residuum
reduction increases towards the value of 1 for larger imaginary values of κ. For κ ≈ i6 the
solution of all operators tend to become unstable (rc ≥ 1). This is also the reason why an
increase of the discretization error is observed for larger imaginary values of κ in the case
of L6c. This fact, however, is also true for the continuous problem, which means that it is
a principal problem, not a numerical one, related to the current approximation scheme.

In addition to the schemes, derived in Sec. 2, combinations were explored in order to
provide a method, which is able to cope with boundary conditions, prescribed only on
one layer of grid points. For Test Case 1 (cmp. Sec. 3.3), the schemes L6cδf , LP04 and
LP22 were applied in the interior of the computational domain, while L6c∂f was used at
the outermost part of the domain to treat the boundary conditions. These schemes are
referred to as L6cδf/6c∂f , LP04/6c∂f and LP22/6c∂f . As is seen in Table 2, the accuracy
of the combined schemes is mainly conserved. Only for largest imaginary value of κ it

‖ǫǫǫh‖ (×10−12)
κ L3bl L6c∂f L6cδf L6cδf/6c∂f LP04 LP22 LP04/6c∂f LP22/6c∂f

i5 24.6 79.9 37.4 49.1 9.17 42.7 13.8 56.5
i2 9.18 26.4 3.83 3.90 1.80 10.2 1.85 10.4
0 8.18 24.8 3.64 3.70 1.58 8.90 1.57 9.02
2 7.48 23.5 3.83 3.87 1.37 7.89 1.39 7.94
5 4.89 19.9 7.81 7.72 0.86 4.96 0.84 4.90

Table 2: Discretization error ‖ǫǫǫh‖ for Test Case 1 and different
values of κ for discretization schemes L3bl, L6c∂f , L6cδf , LP04 and
LP22 as well as combinations of different schemes (cmp. Sec. 2.4),
which are fully compact, L6cδf/6c∂f , LP04/6c∂f and LP22/6c∂f .
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Figure 3: Discretization error ‖ǫǫǫh‖ for the three different test cases
(TCi), explored in the present work (TC1: κ = 2, TC2: κ = i5,
TC3: κ = 10). In Test Case 2 the solution is split into near- and
far-field part, where the near-field part has a worse error reduction
due to a non-smooth source function and a singular field solution
at the source origin. For comparison, also theoretical lines for the
expected error behavior, ‖ǫǫǫh‖ ∝ h6, are shown.

is slightly reduced with respect to the pure schemes. Since this value of κ corresponds
already to the indefinite region of the Helmholtz operator, it is not a real drawback of the
schemes. Therefore the combination provides a powerful method to combine schemes of
good convergence characteristics with the advantage of compactness.

3.2 Local truncation error

The order of the finite difference approximations can be checked by analysing the local
truncation error τ . As an illustration this is shown explicitly here for the simple second
order approximation to the Helmholtz equation, which can be written as

1

h2
(u(x − h, y, z) + u(x, y − h, z) + u(x, y, z − h) − 6u(x, y, z) (51)

+u(x + h, y, z) + u(x, y + h, z) + u(x, y, z + h)) − κ2u(x, y, z) + f(x, y, z)

=
1

h2

(

∞
∑

n=0

1

n!
(∂n

x + ∂n
y + ∂n

z )u(x, y, z)(1 + (−1)n)hn − 6u(x, y, z)

)

−κ2u(x, y, z) + f(x, y, z)

= (∂2
x + ∂2

y + ∂2
z )u(x, y, z) +

h2

12
(∂4

x + ∂4
y + ∂4

z )u(x, y, z) − κ2u(x, y, z) + f(x, y, z)

= (Λu(x, y, z) + f(x, y, z)) + τ

Here, in the second part of the equation a Taylor expansion was applied to the finite difference
terms. The last part shows the consistency of the approach, leading to a Helmholtz equation
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plus an error, which can be written as

τ =
h2

12
(∂4

x + ∂4
y + ∂4

z )u(x, y, z) + O(h4) (52)

showing that this scheme is of second order.
For the higher order schemes one finds

Λ̃3blu(x, y, z) + f(x, y, z) = S0 + τ3bl (53)

Λ̃6cu(x, y, z)+Γ̃6c∂ff(x, y, z) = S0+
h2

12
(S1+κ2S0)+

h4

360
(4S3+S2+κ2S1+κ4S0)+τ6c∂f (54)

Λ̃6cu(x, y, z)+Γ̃6cδff(x, y, z) = S0+
h2

12
(S1+κ2S0)+

h4

360
(4S3+S2+κ2S1+κ4S0)+τ6cδf (55)

Λ̃P04u(x, y, z) + Γ̃P04f(x, y, z) = S0 +
h2

12
S1 +

h4

720
(5S3 + 2S2) + τP04 (56)

Λ̃P22u(x, y, z) + Γ̃P22f(x, y, z) = S0 +
2

15
h2S1 +

h4

450
(8S3 + 5S2) + τP22 (57)

where the Si are expressions which reduce to combinations of the Helmholtz equation. Due
to consistency of the finite difference expressions all Si vanish. Explicit expressions for the
Si are given in Appendix A.
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The local truncation errors are thereby calculated as

τ3bl =
1

560
{∂8

x + ∂8
y + ∂8

z}u(x, y, z) h6 + O(h8) (58)

τ6c∂f =
( 1

2160
{∂2

x∂6
y + ∂2

x∂6
z + ∂2

y∂6
x + ∂2

y∂6
z + ∂2

z∂6
x + ∂2

z∂6
y}u(x, y, z) (59)

+
1

360
{∂2

x∂2
y∂4

z + ∂2
x∂2

z∂4
y + ∂2

y∂2
z∂4

x}u(x, y, z)

+
1

864
{∂4

x∂4
y + ∂4

x∂4
z + ∂4

y∂4
z}u(x, y, z) +

1

20160
{∂8

x + ∂8
y + ∂8

z}u(x, y, z)

− κ2

2160
{∂2

x∂4
y + ∂2

x∂4
z + ∂2

y∂4
x + ∂2

y∂4
z + ∂2

z∂4
x + ∂2

z∂4
y}u(x, y, z)

)

h6 + O(h8)

τ6cδf =
( 1

2160
S5 +

1

540
{∂2

x∂2
y∂4

z + ∂2
x∂2

z∂4
y + ∂2

y∂2
z∂4

x}u(x, y, z) (60)

+
1

4320
{∂4

x∂4
y + ∂4

x∂4
z + ∂4

y∂4
z}u(x, y, z) +

1

20160
{∂8

x + ∂8
y + ∂8

z}u(x, y, z)

+
1

2160
{∂2

x∂4
y + ∂2

x∂4
z + ∂2

y∂4
x + ∂2

y∂4
z + ∂2

z∂4
x + ∂2

z∂4
y}f(x, y, z)

− 1

2160
{∂6

x + ∂6
y + ∂6

z}f(x, y, z) +
κ2

4320
{∂4

x + ∂4
y + ∂4

z}f(x, y, z)
)

h6 + O(h8)

τP04 =
( 1

1728
S5 −

1

2160
S4 +

1

1728
{∂2

x∂2
y∂4

z + ∂2
x∂2

z∂4
y + ∂2

y∂2
z∂4

x}u(x, y, z) (61)

− 1

1440
{∂4

x∂4
y + ∂4

x∂4
z + ∂4

y∂4
z}u(x, y, z)

− 1

2880
{∂2

x∂6
y + ∂2

x∂6
z + ∂2

y∂6
x + ∂2

y∂6
z + ∂2

z∂6
x + ∂2

z∂6
y}u(x, y, z)

+
17

20160
{∂8

x + ∂8
y + ∂8

z}u(x, y, z)
)

h6 + O(h8)

τP22 =
( 1

675
S5 +

1

2700
S4 (62)

+
1

675
{∂2

x∂2
y∂4

z + ∂2
x∂2

z∂4
y + ∂2

y∂2
z∂4

x}u(x, y, z)

+
23

75600
{∂8

x + ∂8
y + ∂8

z}u(x, y, z)
)

h6 + O(h8)

Another way to verify the order of the approximations is to apply the finite difference schemes
to the sampled eigenfunctions of the continuous operators. Since the rhs of the Helmholtz
equation is modified in the cases of L6c, LP04 and LP22 a generalized eigenvalue problem has
to be considered. Complimentary to the present analysis, the eigenvalue method is shown
in Appendix B.

3.3 Test cases

In this section several case studies are presented for the Helmholtz equation. Results are
compared to analytical solutions. All test cases were run on an IBM T30 notebook with a
2 GHz Pentium IV processor with 1 GB DRAM. The program is implemented in Fortran 90
and translated with the Intel compiler version 8.0.
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3.3.1 Test Case 1

A straight forward choice as a test is using a sampled eigenfunction of the Laplace operator

ui,j,k = sin(πihx/L) sin(πjhy/L) sin(πkhz/L) (63)

from where the source function is given as

fi,j,k = (3π2/L2 + κ2) sin(πihx/L) sin(πjhy/L) sin(πkhz/L) (64)

For practical purposes the length L of the box was normalized, L = 1.

3.3.2 Test Case 2

Depending on the sign of κ2, this test case consists of either e.g. calculating the electrostatic
potential of a point charge in an electrolyte solution (κ2 > 0), or e.g. the propagtion of a
wave due to a point source (κ2 < 0), i.e. the source function is given by

f(r) = 4πδ(r−r0) → fi,j,k =







4π

hxhyhz
: (x = ihx, y = jhy, z = khz) = 0.5

0 : else

(65)
which has the analytical solution for the field

u(r) =
e−κ|r−r0|

|r − r0|
(66)

3.3.3 Test Case 3

This test case was taken from Ref. [3] and extended to three dimensions. The potential
function is given by

ui,j,k =
1

cosh(10)
(cosh(10ihx) cosh(10jhy) cosh(10khz)) (67)

with κ = 10, i.e. the source function vanishes, fi,j,k = 0.
Results for all test cases in terms of the discretization error are shown in Fig. 4. In each

case the predicted behavior of error reduction, i.e. ‖ǫǫǫh‖ ∝ h6, is found. The only special
case is observed for Test Case 2, where the solution is subdivided into a near- and far-field
contribution. As a convention the near field part is defined here via the spatial resolution

of the coarsest grid with h = 1/8, i.e. u
(near)
ijk = uijk(r|α ∈ [3/8, 5/8], α = x, y, z) and

u
(far)
ijk = uijk(r|α /∈ [3/8, 5/8], α = x, y, z). The point source function produces a solution

which is non-smooth close to the source and therefore the solution of a relaxation procedure
gives rather poor results in this region. It is found that the error reduction in the near-field
part is only ∝ h0.4. This is mainly due to nearest grid points close to the point source, where
the analytical solution of the potential diverges, i.e. the finer the grid the faster the solution
should get larger values at these grid points. It is found empirically that the error close to
the source remains more or less constant, so that the overall error reduction is due to those
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Figure 4: Discretization error ‖ǫǫǫh‖ for the three different test cases
(TCi), explored in the present work (TC1: κ = 2, TC2: κ = i5,
TC3: κ = 10). In Test Case 2 the solution is split into near- and
far-field part, where the near-field part has a worse error reduction
due to a non-smooth source function and a singular field solution
at the source origin. For comparison, also theoretical lines for the
expected error behavior, ‖ǫǫǫh‖ ∝ h6, are shown.
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Figure 5: Representation of the solution of Test Case 3 with
κ = i5 on different grid sizes. In the upper four figures it is
shown u(x, y, z) × (r − 0.5 1) which corresponds to an exponen-
tially damped wave. The two lower figures show the full solution
on the grid h = 1/64 and a detailed view, cut at u(x, y, z) = 1.
All figures correspond to a cut through the (x, y)-plane at z = 0.5.
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points in the outer region of the near field where the solution already behaves smoother. On
the other hand, the far field part of the potential shows the expected error reduction due
to the fact that the field is smooth and well behaved. A cut at z = 1/2 shows the solution
of Test Case 2 in the x-y-plane for κ = i5 for four different mesh sizes. For a better view
on the infrastructure of the solution, also u(x, y, z) × (r − 1/2) is shown, where 1 is a unit
vector in (x, y, z)-direction.

4 Conclusions

Finite difference schemes of sixth order were derived and applied to a set of different test
cases on grids with mesh spacings in the range h ∈ [1/64, 1/8]. The new schemes have ad-
vantages and disadvantages when considered individually. For example, the schemes based
on the Padé approximations both need next nearest grid points in the iteration matrix,
introducing problems at the boundary of the computational domain, if only one layer of
boundary layers is known in the Dirichlet problem (which is usually the case). On the other
hand these solvers have good convergence characteristics and small discretization errors. In
contrast, the proposed scheme L6c∂f only need one boundary layer for both the lhs and rhs

of the Helmholtz equation. This is true if the source function is sufficiently differentiable.
Otherwise a discrete finite difference scheme has to be applied to the rhs needing two neigh-
boured grid points. This may introduce again problems at the domain boundary. It was
found that the scheme L6c∂f , although having an analytical derivative on the rhs exhibits
a worse discretization error than L6cδf . Therefore a compromise was suggested to combine
those schemes which require next nearest grid points (L6cδf , LP04, LP22) with L6c∂f , where
the former schemes are applied in the interior of the domain and the latter one close to the
boundary, leading to the schemes L6cδf/6c∂f , LP04/6c∂f , LP22/6c∂f . Especially in the case
of the Padé schemes the good convergence characteristics as well as the small discretization
error are conserved, so that these schemes lead to high order procedures for a big class of
problems. The computational overhead introduced by mixing different schemes seems to
be negligible from the present investigations. It may be noted that mixed schemes can be
avoided in the case where periodic boundary conditions are applied or where the distribu-
tion of the source function vanishes near to the boundary. These cases appear e.g. in the
context of molecular simulations, where charged particles are located in the centre of the
computational domain [9].
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A Expressions for the Si

The basic expression for the Si is the bare Helmholtz equation

S0 = Λu(x, y, z) + f(x, y, z) = 0 (68)
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Applying partial derivatives and summing up terms, one gets the following expressions for
higher Si

S1 = {∂2
x + ∂2

y + ∂2
z} S0 (69)

= {∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z} u(x, y, z) + {∂4
x + ∂4

y + ∂4
z} u(x, y, z)

−κ2{∂2
x + ∂2

y + ∂2
z} u(x, y, z) + {∂2

x + ∂2
y + ∂2

z} f(x, y, z)

S2 = {∂4
x + ∂4

y + ∂4
z} S0 (70)

= {∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
y∂4

z + ∂2
z∂4

x + ∂2
z∂4

y} u(x, y, z)

+{∂6
x + ∂6

y + ∂6
z} u(x, y, z)− κ2{∂4

x + ∂4
y + ∂4

z} u(x, y, z)

+{∂4
x + ∂4

y + ∂4
z} f(x, y, z) = 0

S3 = {∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z} S0 (71)

= {∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
y∂4

z + ∂2
z∂4

x + ∂2
z∂4

y} u(x, y, z)

+3∂2
x∂2

y∂2
z u(x, y, z) − κ2{∂2

x∂2
y + ∂2

x∂2
z + ∂2

y∂2
z} u(x, y, z)

+{∂2
x∂2

y + ∂2
x∂2

z + ∂2
y∂2

z} f(x, y, z) = 0

S4 = {∂6
x + ∂6

y + ∂6
z} S0 (72)

= {∂2
x∂6

y + ∂2
x∂6

z + ∂2
y∂6

x + ∂2
y∂6

z + ∂2
z∂6

x + ∂2
z∂6

y} u(x, y, z)

+{∂8
x + ∂8

y + ∂8
z} u(x, y, z)− κ2{∂6

x + ∂6
y + ∂6

z} u(x, y, z)

+{∂6
x + ∂6

y + ∂6
z} f(x, y, z) = 0

S5 = {∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
y∂4

z + ∂2
z∂4

x + ∂2
z∂4

y} S0 (73)

= {∂2
x∂6

y + ∂2
x∂6

z + ∂2
y∂6

x + ∂2
y∂6

z + ∂2
z∂6

x + ∂2
z∂6

y} u(x, y, z)

+2{∂4
x∂4

y + ∂4
x∂4

z + ∂4
y∂4

z} u(x, y, z)

+2{∂2
x∂2

y∂4
z + ∂2

x∂2
z∂4

y + ∂2
y∂2

z∂4
x} u(x, y, z)

−κ2{∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
y∂4

z + ∂2
z∂4

x + ∂2
z∂4

y} u(x, y, z)

+{∂2
x∂4

y + ∂2
x∂4

z + ∂2
y∂4

x + ∂2
y∂4

z + ∂2
z∂4

x + ∂2
z∂4

y} f(x, y, z) = 0

B Operator expansions

In order to validate formally the order of the proposed operators, expansions in terms of
grid spacings, h, were applied to the generalized eigenvalue problem

(

Λ̃φklm − (k2 + l2 + m2 + κ2)Γ̃φklm

)

φ−1
klm = O(hn) (74)

where n gives the order of the approximation, φ is an eigenfunction, Λ̃ is the approximate
Helmholtz operator

Λ̃ = ∆̃
(n)
h − κ2 (75)

and ∆̃
(n)
h is an approximation to the Laplace operator of order n.
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An appropriate eigenfunction is simply chosen as

φklm(x, y, z) = cos(kx) cos(ly) cos(mz) (76)

Applying the finite difference operators gives the following expansions E

E{Λ3bl} =
1

560

(

k8 + l8 + m8
)

h6 + O(h8) (77)

E{Λ6c∂f} =
1

360

(

k2l2m4 + l2m2k4 + m2k2l4
)

h6 (78)

+
1

2160

(

k2(l4 + m4) + l2(k4 + m4) + m2(k4 + l4)
)

h6

+
1

864

(

k4l4 + k4m4 + l4m4
)

h6 +
1

20160

(

k8 + l8 + m8
)

h6

+
κ2

2160

(

k2(l4 + m4) + l2(k4 + m4) + m2(k4 + l4)
)

h6 + O(h8)

E{Λ6cδf} =
1

1080

(

k2l2m4 + l2m2k4 + m2k2l4
)

h6 (79)

− 1

1440

(

k4l4 + k4m4 + l4m4
)

h6

+
31

60480

(

k8 + l8 + m8
)

h6

− κ2

2160

(

k2(l4 + m4) + l2(k4 + m4) + m2(k4 + l4)

+k6 + l6 + m6
)

h6 + O(h8)

E{ΛP04} =
1

1728

(

k2l2m4 + k2l4m2 + k4l2m2
)

h6 (80)

− 1

1440

(

k4l4 + k4m4 + l4m4
)

h6

− 1

2880

(

k6(l2 + m2) + l6(k2 + m2) + m6(k2 + l2)
)

h6

+
31

60480

(

k8 + l8 + m8
)

h6 + O(h8)

E{ΛP22} =
1

675

(

k2l2m4 + k2l4m2 + k4l2m2
)

h6 (81)

+
23

75600

(

k8 + l8 + m8
)

h6 + O(h8)

Some graphical representations of the operator expansions for k = 1 are shown in Fig. 6.
Note the expansions of operators Λ6c∂f and Λ6cδf . In the case where finite difference ap-
proximations to the derivatives of the rhs are applied (Λ6cδf ) there are alternating signs in
the expansion while the case where the rhs is differentiated analytically, only positive signs
appear. This leads to an overall larger truncation error in the expansion. In fact, calculating
the sum

εΛ(K) =
K
∑

k,l,m

E{Λ}(k, l, m) (82)
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Figure 6: Sixth order error behavior of the eigenvalue method for
finite difference schemes L3bl, L6c∂f , L6cδf , LP04 and LP22 for
k = 1. In the case of L6c∂f and L6cδf , κ = 0.
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it is found that εΛ6c∂f
(K)/εΛ6cδf

(K) > 3 for all K, showing that one has to expect a larger
truncation error for Λ6c∂f than for Λ6cδf .

C Maple module for finite difference operators

Here a Maple module is shown, which constructs finite difference operators for even deriva-
tives [10]. All schemes are derived from the forward and backward shift operators

δf,xuh ≡ u(x + h, y, z) − u(x, y, z) (83)

δb,xuh ≡ u(x, y, z)− u(x − h, y, z) (84)

For other dimensions it follows analogously.

> FiniteDifference := module()

export dfx, dfy, dfz, dbx, dby, dbz,

d2x, d2y, d2z, d4xx, d4yy, d4zz, d4xy, d4xz, d4yz,

d6xxx, d6yyy, d6zzz, d6xyy, d6xzz,

d6yxx, d6yzz, d6zxx, d6zyy, d6xyz,

D0, D2, D22, D4, D222, D24, D6;

Forward and Backward shift operators

> dfx := f -> ((h) -> f(x+h,y,z)-f(x,y,z));

> dfy := f -> ((h) -> f(x,y+h,z)-f(x,y,z));

> dfz := f -> ((h) -> f(x,y,z+h)-f(x,y,z));

> dbx := f -> ((h) -> f(x,y,z)-f(x-h,y,z));

> dby := f -> ((h) -> f(x,y,z)-f(x,y-h,z));

> dbz := f -> ((h) -> f(x,y,z)-f(x,y,z-h));

Approximation of 2nd derivatives

> d2x := f -> ((h) -> dfx(unapply(dbx(f)(h),x,y,z))(h));

> d2y := f -> ((h) -> dfy(unapply(dby(f)(h),x,y,z))(h));

> d2z := f -> ((h) -> dfz(unapply(dbz(f)(h),x,y,z))(h));

Approximation of 4th derivatives

> d4xx := f -> ((h) -> d2x(unapply(d2x(f)(h),x,y,z))(h));

> d4yy := f -> ((h) -> d2y(unapply(d2y(f)(h),x,y,z))(h));

> d4zz := f -> ((h) -> d2z(unapply(d2z(f)(h),x,y,z))(h));

> d4xy := f -> ((h) -> d2y(unapply(d2x(f)(h),x,y,z))(h));

> d4xz := f -> ((h) -> d2z(unapply(d2x(f)(h),x,y,z))(h));

> d4yz := f -> ((h) -> d2z(unapply(d2y(f)(h),x,y,z))(h));

Approximation of 6th derivatives
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> d6xxx := f -> ((h) -> d2x(unapply(d4xx(f)(h),x,y,z))(h));

> d6yyy := f -> ((h) -> d2y(unapply(d4yy(f)(h),x,y,z))(h));

> d6zzz := f -> ((h) -> d2z(unapply(d4zz(f)(h),x,y,z))(h));

> d6xyy := f -> ((h) -> d2x(unapply(d4yy(f)(h),x,y,z))(h));

> d6xzz := f -> ((h) -> d2x(unapply(d4zz(f)(h),x,y,z))(h));

> d6yxx := f -> ((h) -> d2y(unapply(d4xx(f)(h),x,y,z))(h));

> d6yzz := f -> ((h) -> d2y(unapply(d4zz(f)(h),x,y,z))(h));

> d6zxx := f -> ((h) -> d2z(unapply(d4xx(f)(h),x,y,z))(h));

> d6zyy := f -> ((h) -> d2z(unapply(d4yy(f)(h),x,y,z))(h));

> d6xyz := f -> ((h) -> d2x(unapply(d4yz(f)(h),x,y,z))(h));

Composite expressions for three dimensional finite difference approximations

> D0 := f -> ((h) -> f(x,y,z));

> D2 := f -> ((h) -> d2x(f)(h) + d2y(f)(h) + d2z(f)(h));

> D22 := f -> ((h) -> d4xy(f)(h) + d4xz(f)(h) + d4yz(f)(h));

> D24 := f -> ((h) -> d6xyy(f)(h) + d6xzz(f)(h) + d6yxx(f)(h)

+ d6yzz(f)(h) + d6zxx(f)(h) + d6zyy(f)(h));

> D222 := f -> ((h) -> d6xyz(f)(h));

> D4 := f -> ((h) -> d4xx(f)(h) + d4yy(f)(h) + d4zz(f)(h));

> D6 := f -> ((h) -> d6xxx(f)(h) + d6yyy(f)(h) + d6zzz(f)(h));

end module;

As an example consider the rhs of the Helmholtz equation as derived in the P [0, 4]
approximation

> with(FiniteDifference):

> D0(f)(h)+2/15*D2(f)(h)+4/225*D22(f)(h);

31 14 14

-- f(x, y, z) + --- f(x - h, y, z) + --- f(x + h, y, z)

75 225 225

14 14

+ --- f(x, y - h, z) + --- f(x, y + h, z)

225 225

14 14

+ --- f(x, y, z - h) + --- f(x, y, z + h)

225 225

+ 4/225 f(x + h, y - h, z) + 4/225 f(x - h, y - h, z)

+ 4/225 f(x + h, y + h, z) + 4/225 f(x - h, y + h, z)

+ 4/225 f(x + h, y, z - h) + 4/225 f(x - h, y, z - h)

+ 4/225 f(x + h, y, z + h) + 4/225 f(x - h, y, z + h)

+ 4/225 f(x, y + h, z - h) + 4/225 f(x, y - h, z - h)

+ 4/225 f(x, y + h, z + h) + 4/225 f(x, y - h, z + h)
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