000048657 001__ 48657
000048657 005__ 20200423204252.0
000048657 017__ $$aThis version is available at the following Publisher URL: http://prd.aps.org
000048657 0247_ $$2DOI$$a10.1103/PhysRevD.72.014503
000048657 0247_ $$2WOS$$aWOS:000230889400040
000048657 0247_ $$2Handle$$a2128/2230
000048657 037__ $$aPreJuSER-48657
000048657 041__ $$aeng
000048657 082__ $$a530
000048657 084__ $$2WoS$$aAstronomy & Astrophysics
000048657 084__ $$2WoS$$aPhysics, Particles & Fields
000048657 1001_ $$0P:(DE-Juel1)132215$$aOrth, B.$$b0$$uFZJ
000048657 245__ $$aFinite-Size Effects in Lattice QCD with Dynamical Wilson Fermions
000048657 260__ $$a[S.l.]$$bSoc.$$c2005
000048657 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2005-07-18
000048657 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2005-07-01
000048657 300__ $$a014503
000048657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000048657 3367_ $$2DataCite$$aOutput Types/Journal article
000048657 3367_ $$00$$2EndNote$$aJournal Article
000048657 3367_ $$2BibTeX$$aARTICLE
000048657 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000048657 3367_ $$2DRIVER$$aarticle
000048657 440_0 $$04923$$aPhysical Review D$$v72$$x1550-7998
000048657 500__ $$aRecord converted from VDB: 12.11.2012
000048657 520__ $$aAs computing resources are limited, choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luscher and with results from chiral perturbation theory (ChPT). We analyze data from hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a approximate to 0.08 and 0.13 fm. The quark masses considered correspond to approximately 85% and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08 fm). We find that an exponential ansatz fits the volume dependence of the pion masses well, but with a coefficient about an order of magnitude larger than the theoretical leading-order prediction. In the case of the nucleon we observe a remarkably good agreement between our lattice data and a recent formula from relativistic baryon ChPT.
000048657 536__ $$0G:(DE-Juel1)FUEK254$$2G:(DE-HGF)$$aBetrieb und Weiterentwicklung des Höchstleistungsrechners$$cI03$$x0
000048657 542__ $$2Crossref$$i2005-07-18$$uhttp://link.aps.org/licenses/aps-default-license
000048657 588__ $$aDataset connected to Web of Science
000048657 650_7 $$2WoSType$$aJ
000048657 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b1$$uFZJ
000048657 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b2
000048657 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.72.014503$$b: American Physical Society (APS), 2005-07-18$$n1$$p014503$$tPhysical Review D$$v72$$x1550-7998$$y2005
000048657 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.72.014503$$gVol. 72, p. 014503$$n1$$p014503$$q72<014503$$tPhysical review / D$$v72$$x1550-7998$$y2005
000048657 8567_ $$uhttp://hdl.handle.net/2128/2230$$uhttp://dx.doi.org/10.1103/PhysRevD.72.014503
000048657 8564_ $$uhttps://juser.fz-juelich.de/record/48657/files/76437.pdf$$yOpenAccess
000048657 8564_ $$uhttps://juser.fz-juelich.de/record/48657/files/76437.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000048657 8564_ $$uhttps://juser.fz-juelich.de/record/48657/files/76437.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000048657 8564_ $$uhttps://juser.fz-juelich.de/record/48657/files/76437.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000048657 909CO $$ooai:juser.fz-juelich.de:48657$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000048657 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000048657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000048657 9141_ $$y2005
000048657 9131_ $$0G:(DE-Juel1)FUEK254$$bInformation$$kI03$$lWissenschaftliches Rechnen$$vBetrieb und Weiterentwicklung des Höchstleistungsrechners$$x0
000048657 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000048657 970__ $$aVDB:(DE-Juel1)76437
000048657 980__ $$aVDB
000048657 980__ $$aJUWEL
000048657 980__ $$aConvertedRecord
000048657 980__ $$ajournal
000048657 980__ $$aI:(DE-Juel1)JSC-20090406
000048657 980__ $$aUNRESTRICTED
000048657 980__ $$aFullTexts
000048657 9801_ $$aFullTexts
000048657 981__ $$aI:(DE-Juel1)JSC-20090406