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Abstract

The reliability of surface-based electrical resistivity tomography (ERT) for quan-
tifying resistivities for shallow subsurface water processes is analysed. A method
comprising numerical simulations of water movement in soil and forward-inverse
modeling of ERT surveys for two synthetic data sets is presented. Resistivity con-
trast, e.g. by changing water content, is shown to have large influence on the resis-
tivity quantification.

An ensemble and clustering approach is introduced in which ensembles of 50
different inversion models for one data set are created by randomly varying the
parameters for a regularisation based inversion routine. The ensemble members are
sorted into five clusters of similar models and the mean model for each cluster
is computed. Distinguishing persisting features in the mean models from singular
artifacts in individual tomograms can improve the interpretation of inversion results.

Especially in presence of large resistivity contrasts in high sensitivity areas, the
quantification of resistivities can be unreliable. The ensemble approach shows that
this is an inherent problem present for all models inverted with the regularisation
based routine. The results also suggest that the combination of hydrological and

electrical modeling might lead to better results.

Preprint submitted to Elsevier 9 August 2018
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1 Introduction

The quantification of water content by geophysical methods is an important
focus of hydrogeophysical research. Surface based electrical resistivity tomog-
raphy (ERT) is a promising method, because it is non-intrusive and can cover
large surface areas quickly, while it might also be permanently installed for au-
tomated monitoring purposes. The development of inversion software for the
processing of measured (apparent) resistivities to models of true resistivity has
made fast and extensive surveys possible (Daily et al., 2004). Consequently,
assessing the reliability of ERT for quantifying soil water content is a currently
active research field.

ERT has successfully been used in a number of different applications, e.g.
in borehole surveys of tracer experiments (Slater et al., 2000; Kemna et al.,
2002) or in laboratory experiments (Binley et al., 1996; Slater et al., 2002).

It has also been applied in surface-based surveys of the vadose zone (e.g.

Daily and Ramirez, 1992) and of groundwater flow after heavy rain (Suzuki and Higashi,

2001).
Because choice of measurement configuration and inversion parameters may
have significant influence on the survey results, improving the quality of ERT

surveys has been an intense research topic. Dahlin and Zhou (2004) have com-
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pared 10 different electrode arrays for 2D surveys and assessed their quality
using synthetic data sets. Stummer et al. (2004) have developed algorithms
to calculate optimal electrode arrays that provide as much information on the
subsurface as possible. The effects of measurement errors (Zhou and Dahlin,
2003; Oldenborger et al., 2005) and geometry (Loke, 2000; Hennig et al., 2005;
Sjoedahl et al., 2006) and inversion parameters (Carle et al., 1999; Rings et al.,
2008) on the surveys have been studied.

Geophysical methods cannot directly determine hydrological properties like
soil water content. They must be deducted using a general or calibrated rela-
tionship between the attribute of interest and the property available through
geophysical measurements. In the case of ERT, the resistivities of the subsur-
face are related to water content by a generic petrophysical relation; usually
the equation by Archie (1942). The resistivities, again, are not readily avail-
able from surface-based ERT surveys, but must be obtained from the measured
apparent resistivities via inversion. The most widespread inversion methods
rely on regularised least-squares minimisation to find the smoothest model
of resistivities that gives a model response closest to the measured apparent
resistivities.

Even assuming that the petrophysical relation between resistivity and water
content is known, the resistivity models are non-unique and have likely been
affected by the inversion process. The sensitivity of tomographic surveys plays
a major role in the retrieval of subsurface characteristics, e.g. for surface-based
ERT the sensitivity decreases with depth. Low sensitivity areas (but not only
those) can often be plagued by inversion artifacts (e.g. Rings et al., 2008). The
inversion process and the choice of inversion parameters, e.g. the regularisa-
tion parameters, determine how well the inverted model will reproduce the

real distribution. However, some of the parameter choices can not reliably be
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based upon observation, but must be fitted or depend on experience.
Day-Lewis et al. (2004, 2005) refer to the loss of information caused by the
inversion process, lack of sufficient prior information and survey geometry as
‘correlation loss’. They developed a method to compute the correlation loss as
a function of the influencing factors. This allows an analytical integration of
these factors into geostatistical analyses of quantitative hydrological field sur-
veys, but needs a priori knowledge of covariance models. Singha and Gorelick
(2006) suggest a nonstationary estimation approach that uses numerical simu-
lations of transport and electrical current flow to deduct apparent petrophysi-
cal relations. These methods modify the translation from the inverted models
by adjusting the petrophysical relation but require either a priori knowledge
or are computationally intensive.

To assess the quality of ERT-based water content quantification, the complete
processing chain including the inversion process, the petrophysical relation
and numerical simulations of the soil water movement has to be evaluated.
This study introduces a combined approach using soil hydraulic simulations
and ensemble building of inverted models to estimate the uncertainty inherent

in typical applications of ERT for water content quantification.

2 Methods

To evaluate the inversion process, a forward-inverse cycle approach is used. In
numerous applications and studies, forward modeling of synthetic data sets
has been used to gain additional insight and confidence into measurements
and the inversion process (e.g. Loke and Dahlin, 2002; Godio and Naldi, 2003;

Hauck and Vonder Muehll, 2003; Loke et al., 2003; Nguyen et al., 2005, 2007;
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Rings et al., 2005). Forward modeling routines are applied to synthetic data
sets obtained from simulations of soil water movement. For two cases studies,
the approach is used to discuss how slight variations in the soil structure
influence the resistivity retrieval, and thereby the water content retrieval.
The second part of the study proposes an ensemble approach which allows an
overview of the possible range of inverted models, improves the analysis and
enables general assertions about how well a given model can be characterised
through the chosen inversion process.

In the following, each methodological step of the methods will be shortly
introduced, further discussion will illustrate how these steps can be applied to
create and analyse two synthetic data sets.

The forward-inverse cycle consists of three steps:

(1) Simulation of water movement in soil: A model with specific soil structure
is generated for numerical simulation of water movement. The movement
of a water front, caused by infiltrating rainfall, is simulated over time.
Characteristic states of water percolation are identified (starting with a
completely dry soil) and a simplified distribution of water content for
each state is extracted.

(2) Generic resistivity model: A generic resistivity model mirroring the soil
structure from (1) is created.

e For a model representing a dry state (no water content), resistivities are
assigned based on typical values known from laboratory measurements
and /or literature.

e For states of water percolation, changes in water content can be calcu-
lated using the water content distribution from (1). They can be trans-

ferred into resistivity changes by applying a petrophysical relation, e.g.
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the equation by Archie (1942).

e A finite-element based forward modeling routine transfers the generic
resistivity models into model responses (sets of apparent resistivities)
that correspond to the data that would have been recorded by field
surveys. Random noise is added to simulate field measuring conditions.

(3) Resistivity inversion: The apparent resistivities are inverted using a suit-
able inversion scheme. The most widespread inversion schemes include
smoothness constrained (L2-norm) methods and robust (L1-norm) schemes
which are preferable if sharp layer boundaries are present. The forward-
inverse cycle is completed by comparing and evaluating the generic and

inverted model of resistivities.

The ensemble method comprises two steps:

(1) Ensemble generation: For each data set, an ensemble of 50 different in-
verted models is created by varying the inversion parameters and/or the
inversion scheme. The parameter set is chosen randomly from a parameter
space constrained to physically meaningful parameter sets.

(2) Clustering: A clustering algorithm is used to group similar models of the
ensemble. Cluster members can be averaged to simplify the analysis of

the ensemble.

2.1 Forward-inverse cycle

The application of this methodology was governed by the available software
codes for modeling and inversion. This section discusses how the steps were

specifically realised to create and analyse two synthetic data sets.
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2.1.1 Simulation of water movement in soil

A numerical simulation of water movement was used to ensure that realistic
distributions of water content (and thus resistivity) were used in this study.
If a continuously connected air phase is assumed, the equation of motion for

water in soil was given by Richards (1931) as:

e+ K (V0 — 00 0

with volumetric water content 6,,, hydraulic conductivity K,,, matric potential
U,,, density of water p,, and gravitational acceleration g. To solve Eq. 1 for
water content, the material properties have to be given that connect 6,,, K,
and W,,. Usually, the soil-water characteristic 0,,(V,,) and the conductivity

K,(0,) are parameterised.

The most widely used parameterisation for the soil-water characteristics (van Genuchten,

1980), written in terms of water saturation S = (6 —#6,)/(6s —6,) with residual

water content 6,, saturated volumetric water content ¢, and hydraulic head

by = \I'm/(ng)a is

1

S(hm) = [1+ (ahy)]" > (2)

with the scaling factor o, which is related to the air-entry value 1/a, and the
parameter v connected to the pore size distribution. The hydraulic conduc-
tivity is characterised by applying the parameterisations of Mualem (1976). A
concise overview of the soil physics is given e.g. by Stephens (1996).

Equation 1 was solved numerically using the HYDRUS software (Simunek et al.,
2006). By defining time-variable precipitation and evaporation rates as atmo-

spheric boundary conditions, changes in the hydraulic head h,, and thus water
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movement are induced.

The simulations were conducted with models representing a two-layered soil
representative of a site used in previous field studies (Rings et al., 2008). In
addition to an atmospheric boundary, a seepage boundary on the bottom al-
lowed water to leave the domain. From the simulations, characteristic states
of a water front infiltrating the domain were identified. Generally, beyond the
dry state, characteristic states should be chosen at times when the water con-
tent distribution has changed significantly, e.g. when one layer has become

completely saturated.

2.1.2  Generic resistivity model

The transfer from water saturation values S to electrical resistivity p is given

by the equations of Archie (1942). Here the quotient form is applied given by
Pi _ (i)_n (3)
pi S

where it is assumed that two measurements of the same soil at time steps 7, j
differing only in water saturation are connected by the saturation exponent
n. n is near 2 for an organic overburden and in the range of 1.01 to 2.7 for
unconsolidated sands (Ulrich and Slater, 2004).

A generic model of resistivities was constructed calculate the response (mea-
surement data) an actual ERT survey would have retrieved. We simulated
field conditions by superimposing 3 % random noise on the resulting apparent

resistivity data set.
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2.1.3 Inversion of apparent resistivities

The forward-inverse cycle is completed by inverting the simulated measure-
ment data. Generic and inverted models can then be compared and the dis-
crepancies analysed.

A robust inversion scheme by Loke et al. (2003), which is usually employed
whereever sharp layer boundaries are expected, was chosen. It is implemented
as an iteratively reweighted least-squares method (Wolke and Schwetlick, 1988)
in the software RES2DINV:

(JIR4I; + W\WTR,,W)Am; = J'R,Ad; — A\W'R,,Wm,_, (4)

Here J; are Jacobian matrices of partial derivatives for the i-th iteration, W is
aroughness filter using a first-order finite-difference operator (deGroot Hedlin and Constable,
1990), \; are damping factors, R; and R, are weighting matrices to give dif-
ferent elements of data misfit and model roughness vectors equal weights,
Am; is the change in model parameters for the i-th iteration and Ad; is the
data misfit vector containing the difference between calculated and observed
apparent resistivities. Since the Ad values may extend over several orders of
magnitude, logarithmic differences are employed.

Equation 4 is solved iteratively until either the root-mean square (RMS) of
the data misfit vector Ad; does not change significantly after an inversion
step and/or it becomes smaller than the measurement accuracy. The weight-
ing matrices Ry and R, are predefined, and default values were chosen for

i
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2.2  Ensembles

Inversion problems for geoelectrical surveys are usually ill-posed, mixed deter-
mined problems. If the errors in data acquisition and in the inversion process
would be known quantitatively, the optimum model and its error distribution
could be determined exactly. Measurement errors often can only be estimated,
and further discrepancies may be introduced during inversion, especially if an
inversion code is used that does not rigorously optimise for a given error esti-
mate. Additionally, inverted models can be plagued by possibly large inversion

artifacts depending e.g. on resistivity contrasts.

2.2.1 Building Ensembles

Consequently, it might not be sufficient to analyse only the optimum model
(i.e. the model with the smallest data misfit), but to compute a range of
possible models addressing the inherent variability of the inversion process.
By randomly varying the inversion parameter set and creating an ensemble
of possible inversion models, the whole parameter space and thus the possible
model range is explored.

For the RES2DINYV code used here, the selected parameters are listed in Table
1. The table also includes for each parameter the range from which a value was
automatically and randomly selected. The parameter selection encompasses
the use of smoothness constrained and robust inversions as well as two mixed
formulations with a robust constraint applied only on the data, and one with
a robust constraint applied only on the model. Further variations address
the regularisation, e.g. the damping factor, where an initial damping factor

Astart @and the maximum damping factor A,,.. are varied. For most variations,

10
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the maximum damping factor \,q. is kept at Ajae = 10 - Agore. Additional
variations include the reduction of side block effects, the ratio of vertical to
horizontal smoothness filtering and the use of the first iteration step model
as a reference model for the further iterations instead of using the average of
resistivities.

It should be noted that this choice of variations is specific for the software used
in this study. However, the idea can easily be transferred to similar inversion
approaches.

Almost all inversions resulted in inverted models with RMS errors smaller
than 4% as can be expected from adding 3% artifical noise to the data set.
Some single inversions, however, resulted in a larger RMS error. In section 3,
both, inversion models with RMS < 4% and > 4%, will be included to keep

the ensembles balanced.

2.2.2  Clustering

Each ensemble is created as a set of 50 different inversion models and then
regrouped using a k-means clustering algorithm (Dubes and Jain, 1988). 50
models have been chosen arbitrarily as a compromise between computational
efficiency and the necessity to generate a sufficiently large ensemble for clus-
tering. The k-means clustering method starts with a collection of genes; here
a gene is a row of all block resistivities of one model. The distance d between

two genes is calculated as a Pearson correlation
1 ri—T\ (Y —7
d=— ( ) 5
N Z Oz ( Ty ) ©)

where T is the average of values in gene = and o, is the standard deviation

of these values (Eisen et al., 1998). The k-means clustering starts with a user
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decision on the number of clusters to be created, then randomly assigns each
gene to a cluster. For each cluster, the average model is created, then each gene
is assigned to the cluster it has the smallest distance from. These last steps
are repeated until an optimal solution is found. At least two runs creating
the same optimal solution are needed to reach a reliable solution (Eisen et al.,
1998). In this study, we used five clusters to generate a sufficiently large cluster
variability while ensuring that the number of ensemble members per cluster

i1s not too small.

2.3  Applicability

All five steps presented here form an analysis cycle for a synthetic case study
investigating the reliability of resistivity quantificaton for shallow subsurface
water processes. For application to field cases, it is possible to create and
analyse a simplified synthetic representation of the actual site following the
five steps above o rapplay only the ensemble and clustering steps t determine

the spread of possible inversion results.

3 Synthetic case studies

All test cases studied here are based on a simple two layer medium represent-
ing the structure of a full-scale dike model described in detail by Rings et al.
(2008). Although synthetic data sets are employed to distinctively focus on
specific anomalies, the material parameters were obtained from real observa-
tion. Hydraulic parameters, following the van Genuchten-Mualem parameter-

isation, were determined in a laboratory experiment by Scheuermann (2005).
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For obtaining the parameters of the overburden, we used an inversion proce-
dure supported by the HYDRUS software. As no direct measurements of water
content in the overburden were available, a rainfall experiment described in
Scheuermann (2005) was simulated. Pressure head measurements in the sand,
but directly below the overburden, were used to invert the hydraulic param-
eters of the overburden. The resulting parameters are listed in Table 2 for
the two different materials. Meteorological data from the permanent station
Karlsruhe-Nordwest (Germany) were used as forcing. The Penman formula,
calibrated for grass cover by Doorenbos and Pruitt (1977), was applied to
these data to retrieve values for potential evapotranspiration. Combined with
measured precipitation rates, these values have been used as daily averages
for simulations of 210 days based on measurements in 2001.

Based on this two layer medium, two generic cases representing different ide-
alised case studies were created: The first case study simulates a defective
sealing, where an infiltration plume of water is generated in the sand layer. In
the second case study, a rectangular, hydraulically resistive anomaly is placed

in the sand underneath the organic overburden.

3.1 First Case: Defective Sealing

The first case is based on the idea of a crack in a dike sealing. Damaged
sealings are critical, as even through small cracks, large amounts of water can
infiltrate.

In this hypothetical case, water infiltrates through an otherwise sealed off
surface through one crack. The sealing is considered to be invisible to the

geoelectrical survey.

13
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3.1.1 Water Simulation

In HYDRUS, the sealing is modeled as a no-flow boundary, and the crack
has an atmospheric boundary and is filled with sand material. The simula-
tion results show water infiltrating through the crack into the sand where it
diffuses into a sinking plume. The water content does not change outside of
the plume (Fig. 2). Three characteristic states of the simulated results can
be identified: dry state (Fig. 2a), infiltration state (the plume begins to form
in the sand, Fig. 2b) and the diffusion state (Fig. 2c), where the center of
the plume has propagated into the sand and the top layer is already drying.
The transfer from water content to resistivities was done by assuming a dry
state resistivity of p = 400 Q2m for the overburden and p = 5000 2m for the
sand and applying Eq. 3 with saturation exponent n = 2 for the overbur-
den and n = 1.164 for the sand (see Rings et al., 2008). During infiltration

and diffusion, this results in a minimal resistivity in the plume of p = 2000 Qm.

3.1.2  Forward-Inverse Cycle

Figure 3 shows three standard (robust) inversion models for the three states
of water percolation. A complete Wenner-Schlumberger array with electrode
separation 0.5 m has been simulated in the forward modeling. In the dry state,
the crack is clearly visible. In the infiltration state, the infiltrating plume is
characterised through a distinct lower resistivity than the background, while
in the diffusion state the inversion did not sufficiently resolve the shape of the
plume.

To analyse the dependence of the inversion results on the resistivity con-

14
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trast between the plume and the host material, the plume resistivity was
increased or lowered in steps of 250 2m around the minimal plume resistivity
of 2000 Q2m. A total of nine models with plume resistivity ranging from 1000
to 3000 Qm were explored, while the background resistivity stayed constant
at 5000 2m.

Generally, the resistivity of an anomaly p,,,,,, is

Panom = Min{p;} (6)

for all model blocks ¢ below the overburden. The misfit in the anomaly’s
resistivity Ap,, is the difference between the resistivity of the anomaly in the

BENETIC Pyom gen a0 inverted model pg,,om iny:

Apm

= p;nom,gen - p;nom,im} (7)

For this case study, corresponds to the resistivity in the center of the

Panom
plume. Figure 4 shows the results of the forward-inverse cycle as Ap,, vs the
resistivity contrast. While the error in resistivity quantification is smallest
for the orginal contrast of 4:10, smaller and higher contrasts both result in
increasingly larger Ap,,.

Ap,, is slightly smaller in the infiltration state. In the diffusion state, the

center of the plume has sunk to greater depth, where the reduced sensitivity

of ERT may be the reason for a less accurate quantification.

3.1.3 Ensemble

The inversion ensemble for the case of the defective sealing and the diffusion

state is shown in Figure 5. All models within the ensemble detected the over-
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352

burden with the damaged sealing, but the model parts below this overburden
show different features. In the first cluster, {2-sloped artifacts appear to the
side of the plume with equal resistivity as the plume itself. In the second
cluster the artifacts appear as well, but have comparably higher resistivity, so
that the plume appears as a distinct feature. In the third cluster, both plume
and ()-sloped artifacts are roughly in the same resistivity range, but have
a higher resistivity than in cluster 1. The fourth cluster comprises strongly
damped models where the plume is mostly visible. The last cluster shows
models where the plume is clearly visible, with comparably better contrast,
but mostly the vertical extent of the plume feature is overestimated.

To comprehend the ensemble results in a simple way, averaged models of each
cluster are shown in Figure 6. As the clustering process already involves av-
eraging, this is a valid method. In Figure 6, the mean models for each of
the clusters of the ensemble shown in Figure 5 are now listed according to
the number of cluster members. It must be noted that the smallest cluster
contains only 3 models, whereas the largest cluster contains almost half the
models of the ensemble. The average RMS error of each cluster is below 4%.
The most prominent feature retrieved in all models is the two-layered struc-
ture, which can be observed in all five clusters. This structure is present even
in clusters where the damping is strong enough to nearly hide the plume
anomaly. When comparing clusters 3-5 to the strongly damped inversion re-
sults in cluster 1, the typical (2-sloped structure can be identified as an artifact
at the lateral boundaries of the plume. Compared to the standard model (0),
the cluster averages allow a much better identification of features, even though
some interpretational experience or a priori knowledge is needed to distinguish

between real anomalies (cluster 5) and artifacts (cluster 4).

16



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

3.2 Second Case: Hydraulically Resistive Anomaly

In the second case, the accuracy of resistivity quantification for a rectangular,
hydraulically resistive anomaly placed below the organic overburden is stud-
ied. First, a soil model with an organic overburden and an anomaly at 0.55
m depth was created in HYDRUS. To represent the hydraulically resistive
material of the anomaly, the same material as for the organic overburden was
used. Then, multiple versions of this model were created with slightly differ-
ent geometries. Table 3 shows the differences between the respective models,

which will be explained in the following.

3.2.1 Water Simulation

In the simulation of water movement, a dry state, an infiltration state and a
diffusion state were identified as characteristic states of an infiltrating water
front. In the dry state (Fig. 7a), the soil is completely free of water. In the
infiltration state (Fig. 7b), the water front is propagating into the volume. The
hydraulically resistive anomaly causes water to impound on top, only slowly
infiltrating into the anomaly. In the diffusion state (Fig. 7c), the infiltration
front has reached the bottom boundary of the model, and the organic overbur-
den and parts of the sand directly below are beginning to dry. The anomaly
is filled with water that infiltrates into the sand beneath.

Analysis of the quality of water content estimation through ERT was con-
ducted for a variety of models and electrode configurations based on the three
states of water percolation in Figure 7. To study the influence of contrasting

resistivities at the surface, models with and without an organic overburden
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were used for simulation. In addition, the depth of the anomaly was varied in
steps of 0.2 m with the upper boundary at 0.35 m to 1.15 m depth. To examine
the effect of electrode configuration, two different electrode arrays (complete
Wenner-Schlumberger and Dipole-Dipole arrays) with an electrode spacing of

0.5 m were used for each model (Table 3).

3.2.2  Forward-Inverse Cycle

Inspection of the inverted models (Fig. 8, right column) shows that the rectan-
gular shape of the anomaly cannot be exactly retrieved. Determination of an
average resistivity of the anomaly would be dependent on an arbitrary deter-
mination of anomaly borders. It is also not possible to determine the average
resistivity at the actual position of the anomaly, since the perceived depth of
the anomaly is greater than the actual depth.

In the following, results for the different models shown in Table 3 will be
compared regarding Ap,, (Eq. 7), which now corresponds to the (minimal) re-
sistivity of the anomaly. Figure 9 shows Ap,, as a function of anomaly depth.
For the Wenner-Schlumberger array, Ap,, increases with anomaly depth, reach-
ing up to 2-3 times the expected value. A much better estimate is obtained if
no organic overburden is present (gray curves). For these cases, better quan-
tifications of p,,.,, are possible and Ap,, increases only slightly with depth. In
the diffusion state, significantly smaller errors occur compared to other states
of water percolation, especially in the presence of an organic overburden.

As can be seen in Figure 8, the error in depth resolution is rather large. If
an organic overburden is present, the thickness of this layer is overestimated,

causing a shift in the vertical position of the anomaly of 0.3 to 0.4 m. It was

18



402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

also observed that at greater depths, the position stays approximately the
same for an anomaly expected at 0.75 m to 1.15 m depth. Again, in the case
of a model without an organic overburden, the higher sensitivity due to higher
resistivities near the surface makes better depth determination possible.

For models simulated with the Dipole-Dipole array, errors for models with or-
ganic overburden are significantly smaller than for the Wenner-Schlumberger
array. However, the Dipole-Dipole array was shown to be very sensitive to
noise and disturbances at the surface (like a stone pathway), to a point were
measurements taken using this array could not be interpreted with the avail-
able inversion routines.

As a measure of the quality of the inversion, a simple criterion containing the

model misfit M as the sum of all errors has been applied:

M = Z |pinv,i - pgen,i| (8)
F;

where F; is the i-th model block of the inversion domain discretisation.
Comparison of M for the different states of water percolation (Fig. 10) shows
that the diffusion state gives significantly better results. In this state, the misfit
below the organic overburden and to the sides of the anomaly is much smaller,
additionally the depth of the anomaly and overburden are better resolved.
Figure 11 shows the spatial error distribution for each state. In the dry state,
the biggest errors stem from an overestimated thickness of the overburden,
which also entails further mispositioning of the anomaly. The anomaly itself is
also vertically elongated, leading to considerable errors in the lower parts. In
the diffusion state (Fig. 11 (b)), the resistivity contrast between overburden
and wet sand is much smaller, due to a) the sand having a reduced resistivity

as it is more saturated with water and b) the overburden being dryer as in
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the previous states, resulting in a higher resistivity. As a consequence of this
reduced resistivity contrast, the errors resulting from an incorrect overburden

thickness are reduced as well.

3.2.3 Ensemble

For the case of the hydraulically resistive anomaly, the random set of param-
eters is applied to generic models of all three different states of water perco-
lation. To assure comparability, the random parameter set stays the same for
each of the three models.

A model with an anomaly at 0.75 m depth was used, including an organic
overburden and using the Wenner-Schlumberger array. For each state, an en-
semble of 50 inverted models was created. For simplification, only mean cluster
members are shown. Figure 12 shows the five clusters per ensemble with the re-

spective number of ensemble members. The respective Ap,, is listed in Table 4.

e Dry State: The rectangular shape of the anomaly is retrieved variably well,
but for the models 4 and 5, where the thickness of the anomaly is smaller,
a strong overestimation of resistivities is present in the lower part of the
model (> 7000 Qm instead of 5000 ©m). The resistivity of the anomaly
Panom 18 much too high for all five models. For models 1 and 2 that contain
most of the ensemble members, the anomaly is vertically elongated.

o Infiltration State: In four models, the shape of the anomaly has been re-

trieved quite well, but for model 10, two zones of minimal resistivity have

been detected rather than the rectangular shape. In all models, Ap,, is very
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large compared to the expected resistivity of the anomaly p = 65 Qm. Again,
models 9 and 10 (same inversion parameters as model 4 and 5) overestimate
the background resistivity at greater depth.

e Diffusion State: The resistivity of the anomaly is detected with lower resis-
tivity as in the infiltration state, closer to the expected resistivity of 45 Qm.
Again, in model 13 and 15, the strong inversion artifact is present near the
bottom coinciding with the shape of the anomaly being retrieved quite well.
These artifacts are not present in model 11, 12 and 14, where the anomaly is
vertically elongated. Model 15 presents a mixed case of a slightly elongated

anomaly and an artifact of smaller extent than in model 13.

Table 4 shows, sorted for the cluster representatives, the misfits in the anomaly’s
resistivity. While it is apparent that the errors are large in each case, they are

again considerably smaller for the diffusion state.

4 Discussion and Conclusion

The ability of electrical resistivity tomography to accurately determine resis-
tivity distributions was examined. A two-step model approach was used to
create synthetic data sets. It comprises the modeling of soil water movement
for synthetic soil data sets and a transfer into a model of generic resistivi-
ties using a petrophysical relation. A forward-inverse cycle is used evaluate
how well the geophysical inversion scheme can reconstruct the given soil data
set and its water content. An ensemble and clustering approach is proposed
because a single model deduced as the optimal model does not necessarily
reproduce the expected resistivities accurately.

The methods were applied to two case studies of simple soil models based on a
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two-layered structure reproducing field observations. The first case simulates
the infiltration of water through a cracked surfical sealing, and the second a
hydraulically resistive anomaly in a sand layer.

Key results of the forward-inverse modeling in this study include:

e In the presence of large resistivity contrasts, e.g. a conductive organic over-
burden, the retrieval of accurate resistivity values beneath this layer using
the regularisation based inversion method applied in this study is not possi-
ble. However, if the volume is monitored at various stages of water percola-
tion, the retrieval quality can differ. Especially in the diffusion state, much
better accuracy was possible.

e The model misfit increases with depth, as the sensitivity of the inversion
model to the data decreases.

e In the absence of an organic overburden, a much better quantification is
possible because of a lower resistivity contrast.

e The numerical study showed that a Dipole-Dipole array provides more accu-
rate inversions than the Wenner-Schlumberger array. However, in practical
applications, it has to be ensured that the signal-to-noise ratio is sufficiently

large.

As a consequence, an ensemble approach was introduced that creates multiple
inversion models for one data set by randomly choosing the inversion parame-
ters from the possible (and numerically plausible) parameter space. By using
clustering methods, averaged models representing different clusters in the en-
semble can be created and compared. Key results of the ensemble approach

include:
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e Clustering of ensemble members allows an evaluation of the different possi-
ble models that fit the data. Areas likely to be plagued by artifacts can be
identified and the reliability of standard inverted models can be evaluated.

e However, the quantification of resistivities is not considerably improved by
ensembles. For example, it became apparent that resistivities retrieved with
smaller misfits in one region can coincide with larger artifacts in other re-
gions.

e The clustering of ensembles allows an overview of the ensemble, without

losing information about the ensemble.

The ideas of the approaches presented here can easily be adapted to different
models and inversion methods. For the specific inversion process with regular-
isation used in this study, it can be concluded that a reliable quantification of
resistivity values is not possible. The use of additional information, e.g. within
a framework aiming at directly inverting or calculating hydrological proper-
ties from collected data sets that not only contain resistivity measurements,
but also data about the flow conditions, e.g. meteorological data, should be

considered.
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Constraint on the data robust or smooth

Constraint on the model robust or smooth
Initial damping \; 0.01 to 1

Minimal damping A, 0.05); to 0.2);
Convergence limit 1% to 9%
Maximal number of iterations 3,5o0r 15
Vertical to horizontal regularisation 0.25 to 4
Increase of damping with depth 1.0 to 2.0
Reduce effect of none, slight,

side blocks severe, very severe

Higher damping for first layer yes or no

Table 1

Parameter space of inversion parameters used for ensemble calculations.

620 rithms, covergence analysis and numerical comparisons. Statistical Com-
630 putations 9, 907-921.
ea1 Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on

632 2d resistivity imaging surveying. Near Surface Geophysics 1, 105-117.
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Material 0, s « n | Kg [m/d

Sand 0.045 | 0.361 4 2.2 17.28

Overburden || 0.067 | 0.45 | 5.23 | 2.67 0.225

Table 2

Soil parameters for the van Genuchten-Mualem parameterisation. 6, is the residual
water content, fg is the volumetric water content at full saturation, o and n are
parameters connected to the pore radii, and K is the hydraulic conductivity at

saturation.

Organic with |  without
overburden
Depth of 0.35 0.55 0.75 0.95 | 1.15

the anomaly [m)]

State of percolation || dry | infiltration | diffusion

ERT array WS DD

Table 3
Parameter variation for different soil models, infiltration state and measurement

geometry
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Cluster DRY

Cluster INFILTRATION

Cluster DIFFUSION

1) 381

2) 613

3) 228

4) 1068

5) 608

6) 156

7) 294

8) 314

11) 49

12) 41

13) 86

14) 62

15) 228

Table 4

Misfit for the cluster representative shown in Figure 12 (misfits in Qm).
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Movement
in Soil

Generic Model

Water Content of Resistivities

Forward Madel
and Inversion

Measured Data

Fig. 1. Charts visualizing the methodological steps involved in this study. Above:

Steps in the forward-inverse cycle. Below: Steps in the ensemble method.
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Fig. 2. Defective sealing, characteristic states of water percolation. (a) Dry State

(b) Infiltration State (c) Diffusion State.
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Fig. 3. Inverted models for the case of the defective sealing. (a) Dry State (b)

Infiltration State (c) Diffusion State.
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Fig. 4. Misfit of the anomaly for the case of the defective sealing, shown is the

resistivity contrast as the ratio plume divided by host material (x-axis) versus Ap,,

of the the inverted model (y-axis).
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Fig. 5. Clustered ensemble with 50 possible models for the diffusion state of the case
of the defective sealing with an infiltration plume. The domains of the 5 clusters

are indicated by numbers and dividing lines.



Fig. 6. Standard model (0) and averaged cluster models (1-5) for the case of the
defective sealing. In contrast to Figure 5, the clusters are sorted in descending order

by the number of ensemble members.
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Fig. 7. States of the simulation of water movement through a model with a hy-
draulically resistive anomaly (rectangular block marked with thick black outline).
The layer boundary between organic overburden and sand is marked with a thin

horizontal line. (a) Dry State (b) Infiltration State (c) Diffusion State.
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Fig. 8. Generic and inverted models for the anomaly (Wenner-Schlumberger ar-
ray). (a) Dry State (b) Infiltration State (c) Diffusion State. The black rectangle
in the right column marks the location of the anomaly in the left column, the thin

horizontal line marks the layer boundary between organic overburden and sand.
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Fig. 9. Ap,, for cases with organic overburden (black lines) and without (gray lines).
Top row: Survey with Wenner-Schlumberger, bottom row: with Dipole-Dipole. The
left column shows the dry state, the middle column the infiltration state and the

right column the diffusion state.
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Fig. 10. Cumulative block misfits for the three stages of water percolation. Shown is
the logarithm of the sum of all errors M for Wenner-Schlumberger and Dipole-Dipole

arrays and with or without an organic overburden.

5 10 15 20 lm|
. N

(c) Diffusion

10 15 20 |m|
Misfit in Resistivity [Qm]

DN S N W Boa © 4 N R O N © S N W R
OO0 0O 0 0 o0 0 Q0 0 Q2 Q0 Q0 Q0 Qo0 Q

S 6 & 6 & & & 6 ©

S ©o © ©

Fig. 11. Misfit in resistivity distribution by model blocks for anomaly at 0.95 m

depth with organic overburden and Wenner-Schlumberger array.
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Fig. 12. Averaged cluster representatives for the resistive anomaly in the dry (left),

infiltration (middle) and diffusion (right) state.
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