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Abstract

The reliability of surface-based electrical resistivity tomography (ERT) for quan-

tifying resistivities for shallow subsurface water processes is analysed. A method

comprising numerical simulations of water movement in soil and forward-inverse

modeling of ERT surveys for two synthetic data sets is presented. Resistivity con-

trast, e.g. by changing water content, is shown to have large influence on the resis-

tivity quantification.

An ensemble and clustering approach is introduced in which ensembles of 50

different inversion models for one data set are created by randomly varying the

parameters for a regularisation based inversion routine. The ensemble members are

sorted into five clusters of similar models and the mean model for each cluster

is computed. Distinguishing persisting features in the mean models from singular

artifacts in individual tomograms can improve the interpretation of inversion results.

Especially in presence of large resistivity contrasts in high sensitivity areas, the

quantification of resistivities can be unreliable. The ensemble approach shows that

this is an inherent problem present for all models inverted with the regularisation

based routine. The results also suggest that the combination of hydrological and

electrical modeling might lead to better results.
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1 Introduction1

The quantification of water content by geophysical methods is an important2

focus of hydrogeophysical research. Surface based electrical resistivity tomog-3

raphy (ERT) is a promising method, because it is non-intrusive and can cover4

large surface areas quickly, while it might also be permanently installed for au-5

tomated monitoring purposes. The development of inversion software for the6

processing of measured (apparent) resistivities to models of true resistivity has7

made fast and extensive surveys possible (Daily et al., 2004). Consequently,8

assessing the reliability of ERT for quantifying soil water content is a currently9

active research field.10

ERT has successfully been used in a number of different applications, e.g.11

in borehole surveys of tracer experiments (Slater et al., 2000; Kemna et al.,12

2002) or in laboratory experiments (Binley et al., 1996; Slater et al., 2002).13

It has also been applied in surface-based surveys of the vadose zone (e.g.14

Daily and Ramirez, 1992) and of groundwater flow after heavy rain (Suzuki and Higashi,15

2001).16

Because choice of measurement configuration and inversion parameters may17

have significant influence on the survey results, improving the quality of ERT18

surveys has been an intense research topic. Dahlin and Zhou (2004) have com-19
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pared 10 different electrode arrays for 2D surveys and assessed their quality20

using synthetic data sets. Stummer et al. (2004) have developed algorithms21

to calculate optimal electrode arrays that provide as much information on the22

subsurface as possible. The effects of measurement errors (Zhou and Dahlin,23

2003; Oldenborger et al., 2005) and geometry (Loke, 2000; Hennig et al., 2005;24

Sjoedahl et al., 2006) and inversion parameters (Carle et al., 1999; Rings et al.,25

2008) on the surveys have been studied.26

Geophysical methods cannot directly determine hydrological properties like27

soil water content. They must be deducted using a general or calibrated rela-28

tionship between the attribute of interest and the property available through29

geophysical measurements. In the case of ERT, the resistivities of the subsur-30

face are related to water content by a generic petrophysical relation; usually31

the equation by Archie (1942). The resistivities, again, are not readily avail-32

able from surface-based ERT surveys, but must be obtained from the measured33

apparent resistivities via inversion. The most widespread inversion methods34

rely on regularised least-squares minimisation to find the smoothest model35

of resistivities that gives a model response closest to the measured apparent36

resistivities.37

Even assuming that the petrophysical relation between resistivity and water38

content is known, the resistivity models are non-unique and have likely been39

affected by the inversion process. The sensitivity of tomographic surveys plays40

a major role in the retrieval of subsurface characteristics, e.g. for surface-based41

ERT the sensitivity decreases with depth. Low sensitivity areas (but not only42

those) can often be plagued by inversion artifacts (e.g. Rings et al., 2008). The43

inversion process and the choice of inversion parameters, e.g. the regularisa-44

tion parameters, determine how well the inverted model will reproduce the45

real distribution. However, some of the parameter choices can not reliably be46
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based upon observation, but must be fitted or depend on experience.47

Day-Lewis et al. (2004, 2005) refer to the loss of information caused by the48

inversion process, lack of sufficient prior information and survey geometry as49

’correlation loss’. They developed a method to compute the correlation loss as50

a function of the influencing factors. This allows an analytical integration of51

these factors into geostatistical analyses of quantitative hydrological field sur-52

veys, but needs a priori knowledge of covariance models. Singha and Gorelick53

(2006) suggest a nonstationary estimation approach that uses numerical simu-54

lations of transport and electrical current flow to deduct apparent petrophysi-55

cal relations. These methods modify the translation from the inverted models56

by adjusting the petrophysical relation but require either a priori knowledge57

or are computationally intensive.58

To assess the quality of ERT-based water content quantification, the complete59

processing chain including the inversion process, the petrophysical relation60

and numerical simulations of the soil water movement has to be evaluated.61

This study introduces a combined approach using soil hydraulic simulations62

and ensemble building of inverted models to estimate the uncertainty inherent63

in typical applications of ERT for water content quantification.64

2 Methods65

To evaluate the inversion process, a forward-inverse cycle approach is used. In66

numerous applications and studies, forward modeling of synthetic data sets67

has been used to gain additional insight and confidence into measurements68

and the inversion process (e.g. Loke and Dahlin, 2002; Godio and Naldi, 2003;69

Hauck and Vonder Muehll, 2003; Loke et al., 2003; Nguyen et al., 2005, 2007;70
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Rings et al., 2005). Forward modeling routines are applied to synthetic data71

sets obtained from simulations of soil water movement. For two cases studies,72

the approach is used to discuss how slight variations in the soil structure73

influence the resistivity retrieval, and thereby the water content retrieval.74

The second part of the study proposes an ensemble approach which allows an75

overview of the possible range of inverted models, improves the analysis and76

enables general assertions about how well a given model can be characterised77

through the chosen inversion process.78

In the following, each methodological step of the methods will be shortly79

introduced, further discussion will illustrate how these steps can be applied to80

create and analyse two synthetic data sets.81

The forward-inverse cycle consists of three steps:82

(1) Simulation of water movement in soil : A model with specific soil structure83

is generated for numerical simulation of water movement. The movement84

of a water front, caused by infiltrating rainfall, is simulated over time.85

Characteristic states of water percolation are identified (starting with a86

completely dry soil) and a simplified distribution of water content for87

each state is extracted.88

(2) Generic resistivity model : A generic resistivity model mirroring the soil89

structure from (1) is created.90

• For a model representing a dry state (no water content), resistivities are91

assigned based on typical values known from laboratory measurements92

and/or literature.93

• For states of water percolation, changes in water content can be calcu-94

lated using the water content distribution from (1). They can be trans-95

ferred into resistivity changes by applying a petrophysical relation, e.g.96
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the equation by Archie (1942).97

• A finite-element based forward modeling routine transfers the generic98

resistivity models into model responses (sets of apparent resistivities)99

that correspond to the data that would have been recorded by field100

surveys. Random noise is added to simulate field measuring conditions.101

(3) Resistivity inversion: The apparent resistivities are inverted using a suit-102

able inversion scheme. The most widespread inversion schemes include103

smoothness constrained (L2-norm) methods and robust (L1-norm) schemes104

which are preferable if sharp layer boundaries are present. The forward-105

inverse cycle is completed by comparing and evaluating the generic and106

inverted model of resistivities.107

The ensemble method comprises two steps:108

(1) Ensemble generation: For each data set, an ensemble of 50 different in-109

verted models is created by varying the inversion parameters and/or the110

inversion scheme. The parameter set is chosen randomly from a parameter111

space constrained to physically meaningful parameter sets.112

(2) Clustering : A clustering algorithm is used to group similar models of the113

ensemble. Cluster members can be averaged to simplify the analysis of114

the ensemble.115

2.1 Forward-inverse cycle116

The application of this methodology was governed by the available software117

codes for modeling and inversion. This section discusses how the steps were118

specifically realised to create and analyse two synthetic data sets.119
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2.1.1 Simulation of water movement in soil120

A numerical simulation of water movement was used to ensure that realistic121

distributions of water content (and thus resistivity) were used in this study.122

If a continuously connected air phase is assumed, the equation of motion for123

water in soil was given by Richards (1931) as:124

∂

∂t
θw +∇ · [Kw(∇Ψm − ̺w~g)] (1)125

with volumetric water content θw, hydraulic conductivity Kw, matric potential126

Ψm, density of water ̺w and gravitational acceleration ~g. To solve Eq. 1 for127

water content, the material properties have to be given that connect θw, Kw128

and Ψm. Usually, the soil-water characteristic θw(Ψm) and the conductivity129

Kw(θw) are parameterised.130

The most widely used parameterisation for the soil-water characteristics (van Genuchten,131

1980), written in terms of water saturation S = (θ−θr)/(θs−θr) with residual132

water content θr, saturated volumetric water content θs and hydraulic head133

hm = Ψm/(̺wg), is134

S(hm) = [1 + (αhm)
ν ]−1+

1

ν (2)135

with the scaling factor α, which is related to the air-entry value 1/α, and the136

parameter ν connected to the pore size distribution. The hydraulic conduc-137

tivity is characterised by applying the parameterisations of Mualem (1976). A138

concise overview of the soil physics is given e.g. by Stephens (1996).139

Equation 1 was solved numerically using the HYDRUS software (Simunek et al.,140

2006). By defining time-variable precipitation and evaporation rates as atmo-141

spheric boundary conditions, changes in the hydraulic head hm and thus water142
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movement are induced.143

The simulations were conducted with models representing a two-layered soil144

representative of a site used in previous field studies (Rings et al., 2008). In145

addition to an atmospheric boundary, a seepage boundary on the bottom al-146

lowed water to leave the domain. From the simulations, characteristic states147

of a water front infiltrating the domain were identified. Generally, beyond the148

dry state, characteristic states should be chosen at times when the water con-149

tent distribution has changed significantly, e.g. when one layer has become150

completely saturated.151

152

2.1.2 Generic resistivity model153

The transfer from water saturation values S to electrical resistivity ρ is given154

by the equations of Archie (1942). Here the quotient form is applied given by155

ρi
ρj

=
(

Sj

Si

)

−n

(3)156

where it is assumed that two measurements of the same soil at time steps i, j157

differing only in water saturation are connected by the saturation exponent158

n. n is near 2 for an organic overburden and in the range of 1.01 to 2.7 for159

unconsolidated sands (Ulrich and Slater, 2004).160

A generic model of resistivities was constructed calculate the response (mea-161

surement data) an actual ERT survey would have retrieved. We simulated162

field conditions by superimposing 3 % random noise on the resulting apparent163

resistivity data set.164
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2.1.3 Inversion of apparent resistivities165

The forward-inverse cycle is completed by inverting the simulated measure-166

ment data. Generic and inverted models can then be compared and the dis-167

crepancies analysed.168

A robust inversion scheme by Loke et al. (2003), which is usually employed169

whereever sharp layer boundaries are expected, was chosen. It is implemented170

as an iteratively reweighted least-squares method (Wolke and Schwetlick, 1988)171

in the software RES2DINV:172

(JT
i RdJi + λiW

TRmW)∆mi = JT
i Rd∆di − λiW

TRmWmi−1 (4)173

Here Ji are Jacobian matrices of partial derivatives for the i-th iteration, W is174

a roughness filter using a first-order finite-difference operator (deGroot Hedlin and Constable,175

1990), λi are damping factors, Rd and Rm are weighting matrices to give dif-176

ferent elements of data misfit and model roughness vectors equal weights,177

∆mi is the change in model parameters for the i-th iteration and ∆di is the178

data misfit vector containing the difference between calculated and observed179

apparent resistivities. Since the ∆d values may extend over several orders of180

magnitude, logarithmic differences are employed.181

Equation 4 is solved iteratively until either the root-mean square (RMS) of182

the data misfit vector ∆di does not change significantly after an inversion183

step and/or it becomes smaller than the measurement accuracy. The weight-184

ing matrices Rd and Rm are predefined, and default values were chosen for185

λi.186
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2.2 Ensembles187

Inversion problems for geoelectrical surveys are usually ill-posed, mixed deter-188

mined problems. If the errors in data acquisition and in the inversion process189

would be known quantitatively, the optimum model and its error distribution190

could be determined exactly. Measurement errors often can only be estimated,191

and further discrepancies may be introduced during inversion, especially if an192

inversion code is used that does not rigorously optimise for a given error esti-193

mate. Additionally, inverted models can be plagued by possibly large inversion194

artifacts depending e.g. on resistivity contrasts.195

2.2.1 Building Ensembles196

Consequently, it might not be sufficient to analyse only the optimum model197

(i.e. the model with the smallest data misfit), but to compute a range of198

possible models addressing the inherent variability of the inversion process.199

By randomly varying the inversion parameter set and creating an ensemble200

of possible inversion models, the whole parameter space and thus the possible201

model range is explored.202

For the RES2DINV code used here, the selected parameters are listed in Table203

1. The table also includes for each parameter the range from which a value was204

automatically and randomly selected. The parameter selection encompasses205

the use of smoothness constrained and robust inversions as well as two mixed206

formulations with a robust constraint applied only on the data, and one with207

a robust constraint applied only on the model. Further variations address208

the regularisation, e.g. the damping factor, where an initial damping factor209

λstart and the maximum damping factor λmax are varied. For most variations,210
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the maximum damping factor λmax is kept at λmax = 10 · λstart. Additional211

variations include the reduction of side block effects, the ratio of vertical to212

horizontal smoothness filtering and the use of the first iteration step model213

as a reference model for the further iterations instead of using the average of214

resistivities.215

It should be noted that this choice of variations is specific for the software used216

in this study. However, the idea can easily be transferred to similar inversion217

approaches.218

Almost all inversions resulted in inverted models with RMS errors smaller219

than 4% as can be expected from adding 3% artifical noise to the data set.220

Some single inversions, however, resulted in a larger RMS error. In section 3,221

both, inversion models with RMS ≤ 4% and > 4%, will be included to keep222

the ensembles balanced.223

2.2.2 Clustering224

Each ensemble is created as a set of 50 different inversion models and then225

regrouped using a k-means clustering algorithm (Dubes and Jain, 1988). 50226

models have been chosen arbitrarily as a compromise between computational227

efficiency and the necessity to generate a sufficiently large ensemble for clus-228

tering. The k-means clustering method starts with a collection of genes ; here229

a gene is a row of all block resistivities of one model. The distance d between230

two genes is calculated as a Pearson correlation231

d =
1

N

∑

(

xi − x

σx

)

(

yi − y

σy

)

(5)232

where x is the average of values in gene x and σx is the standard deviation233

of these values (Eisen et al., 1998). The k-means clustering starts with a user234
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decision on the number of clusters to be created, then randomly assigns each235

gene to a cluster. For each cluster, the average model is created, then each gene236

is assigned to the cluster it has the smallest distance from. These last steps237

are repeated until an optimal solution is found. At least two runs creating238

the same optimal solution are needed to reach a reliable solution (Eisen et al.,239

1998). In this study, we used five clusters to generate a sufficiently large cluster240

variability while ensuring that the number of ensemble members per cluster241

is not too small.242

2.3 Applicability243

All five steps presented here form an analysis cycle for a synthetic case study244

investigating the reliability of resistivity quantificaton for shallow subsurface245

water processes. For application to field cases, it is possible to create and246

analyse a simplified synthetic representation of the actual site following the247

five steps above o rapplay only the ensemble and clustering steps t determine248

the spread of possible inversion results.249

3 Synthetic case studies250

All test cases studied here are based on a simple two layer medium represent-251

ing the structure of a full-scale dike model described in detail by Rings et al.252

(2008). Although synthetic data sets are employed to distinctively focus on253

specific anomalies, the material parameters were obtained from real observa-254

tion. Hydraulic parameters, following the van Genuchten-Mualem parameter-255

isation, were determined in a laboratory experiment by Scheuermann (2005).256
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For obtaining the parameters of the overburden, we used an inversion proce-257

dure supported by the HYDRUS software. As no direct measurements of water258

content in the overburden were available, a rainfall experiment described in259

Scheuermann (2005) was simulated. Pressure head measurements in the sand,260

but directly below the overburden, were used to invert the hydraulic param-261

eters of the overburden. The resulting parameters are listed in Table 2 for262

the two different materials. Meteorological data from the permanent station263

Karlsruhe-Nordwest (Germany) were used as forcing. The Penman formula,264

calibrated for grass cover by Doorenbos and Pruitt (1977), was applied to265

these data to retrieve values for potential evapotranspiration. Combined with266

measured precipitation rates, these values have been used as daily averages267

for simulations of 210 days based on measurements in 2001.268

Based on this two layer medium, two generic cases representing different ide-269

alised case studies were created: The first case study simulates a defective270

sealing, where an infiltration plume of water is generated in the sand layer. In271

the second case study, a rectangular, hydraulically resistive anomaly is placed272

in the sand underneath the organic overburden.273

3.1 First Case: Defective Sealing274

The first case is based on the idea of a crack in a dike sealing. Damaged275

sealings are critical, as even through small cracks, large amounts of water can276

infiltrate.277

In this hypothetical case, water infiltrates through an otherwise sealed off278

surface through one crack. The sealing is considered to be invisible to the279

geoelectrical survey.280
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3.1.1 Water Simulation281

In HYDRUS, the sealing is modeled as a no-flow boundary, and the crack282

has an atmospheric boundary and is filled with sand material. The simula-283

tion results show water infiltrating through the crack into the sand where it284

diffuses into a sinking plume. The water content does not change outside of285

the plume (Fig. 2). Three characteristic states of the simulated results can286

be identified: dry state (Fig. 2a), infiltration state (the plume begins to form287

in the sand, Fig. 2b) and the diffusion state (Fig. 2c), where the center of288

the plume has propagated into the sand and the top layer is already drying.289

The transfer from water content to resistivities was done by assuming a dry290

state resistivity of ρ = 400 Ωm for the overburden and ρ = 5000 Ωm for the291

sand and applying Eq. 3 with saturation exponent n = 2 for the overbur-292

den and n = 1.164 for the sand (see Rings et al., 2008). During infiltration293

and diffusion, this results in a minimal resistivity in the plume of ρ = 2000 Ωm.294

295

3.1.2 Forward-Inverse Cycle296

Figure 3 shows three standard (robust) inversion models for the three states297

of water percolation. A complete Wenner-Schlumberger array with electrode298

separation 0.5 m has been simulated in the forward modeling. In the dry state,299

the crack is clearly visible. In the infiltration state, the infiltrating plume is300

characterised through a distinct lower resistivity than the background, while301

in the diffusion state the inversion did not sufficiently resolve the shape of the302

plume.303

To analyse the dependence of the inversion results on the resistivity con-304
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trast between the plume and the host material, the plume resistivity was305

increased or lowered in steps of 250 Ωm around the minimal plume resistivity306

of 2000 Ωm. A total of nine models with plume resistivity ranging from 1000307

to 3000 Ωm were explored, while the background resistivity stayed constant308

at 5000 Ωm.309

Generally, the resistivity of an anomaly ρ−anom is310

ρ−anom = min{ρi} (6)311

for all model blocks i below the overburden. The misfit in the anomaly’s312

resistivity ∆ρm is the difference between the resistivity of the anomaly in the313

generic ρ−anom,gen and inverted model ρ−anom,inv:314

∆ρm = ρ−anom,gen − ρ−anom,inv (7)315

For this case study, ρ−anom corresponds to the resistivity in the center of the316

plume. Figure 4 shows the results of the forward-inverse cycle as ∆ρm vs the317

resistivity contrast. While the error in resistivity quantification is smallest318

for the orginal contrast of 4:10, smaller and higher contrasts both result in319

increasingly larger ∆ρm.320

∆ρm is slightly smaller in the infiltration state. In the diffusion state, the321

center of the plume has sunk to greater depth, where the reduced sensitivity322

of ERT may be the reason for a less accurate quantification.323

3.1.3 Ensemble324

The inversion ensemble for the case of the defective sealing and the diffusion325

state is shown in Figure 5. All models within the ensemble detected the over-326
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burden with the damaged sealing, but the model parts below this overburden327

show different features. In the first cluster, Ω-sloped artifacts appear to the328

side of the plume with equal resistivity as the plume itself. In the second329

cluster the artifacts appear as well, but have comparably higher resistivity, so330

that the plume appears as a distinct feature. In the third cluster, both plume331

and Ω-sloped artifacts are roughly in the same resistivity range, but have332

a higher resistivity than in cluster 1. The fourth cluster comprises strongly333

damped models where the plume is mostly visible. The last cluster shows334

models where the plume is clearly visible, with comparably better contrast,335

but mostly the vertical extent of the plume feature is overestimated.336

To comprehend the ensemble results in a simple way, averaged models of each337

cluster are shown in Figure 6. As the clustering process already involves av-338

eraging, this is a valid method. In Figure 6, the mean models for each of339

the clusters of the ensemble shown in Figure 5 are now listed according to340

the number of cluster members. It must be noted that the smallest cluster341

contains only 3 models, whereas the largest cluster contains almost half the342

models of the ensemble. The average RMS error of each cluster is below 4%.343

The most prominent feature retrieved in all models is the two-layered struc-344

ture, which can be observed in all five clusters. This structure is present even345

in clusters where the damping is strong enough to nearly hide the plume346

anomaly. When comparing clusters 3-5 to the strongly damped inversion re-347

sults in cluster 1, the typical Ω-sloped structure can be identified as an artifact348

at the lateral boundaries of the plume. Compared to the standard model (0),349

the cluster averages allow a much better identification of features, even though350

some interpretational experience or a priori knowledge is needed to distinguish351

between real anomalies (cluster 5) and artifacts (cluster 4).352
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3.2 Second Case: Hydraulically Resistive Anomaly353

In the second case, the accuracy of resistivity quantification for a rectangular,354

hydraulically resistive anomaly placed below the organic overburden is stud-355

ied. First, a soil model with an organic overburden and an anomaly at 0.55356

m depth was created in HYDRUS. To represent the hydraulically resistive357

material of the anomaly, the same material as for the organic overburden was358

used. Then, multiple versions of this model were created with slightly differ-359

ent geometries. Table 3 shows the differences between the respective models,360

which will be explained in the following.361

362

3.2.1 Water Simulation363

In the simulation of water movement, a dry state, an infiltration state and a364

diffusion state were identified as characteristic states of an infiltrating water365

front. In the dry state (Fig. 7a), the soil is completely free of water. In the366

infiltration state (Fig. 7b), the water front is propagating into the volume. The367

hydraulically resistive anomaly causes water to impound on top, only slowly368

infiltrating into the anomaly. In the diffusion state (Fig. 7c), the infiltration369

front has reached the bottom boundary of the model, and the organic overbur-370

den and parts of the sand directly below are beginning to dry. The anomaly371

is filled with water that infiltrates into the sand beneath.372

Analysis of the quality of water content estimation through ERT was con-373

ducted for a variety of models and electrode configurations based on the three374

states of water percolation in Figure 7. To study the influence of contrasting375

resistivities at the surface, models with and without an organic overburden376
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were used for simulation. In addition, the depth of the anomaly was varied in377

steps of 0.2 m with the upper boundary at 0.35 m to 1.15 m depth. To examine378

the effect of electrode configuration, two different electrode arrays (complete379

Wenner-Schlumberger and Dipole-Dipole arrays) with an electrode spacing of380

0.5 m were used for each model (Table 3).381

382

3.2.2 Forward-Inverse Cycle383

Inspection of the inverted models (Fig. 8, right column) shows that the rectan-384

gular shape of the anomaly cannot be exactly retrieved. Determination of an385

average resistivity of the anomaly would be dependent on an arbitrary deter-386

mination of anomaly borders. It is also not possible to determine the average387

resistivity at the actual position of the anomaly, since the perceived depth of388

the anomaly is greater than the actual depth.389

In the following, results for the different models shown in Table 3 will be390

compared regarding ∆ρm (Eq. 7), which now corresponds to the (minimal) re-391

sistivity of the anomaly. Figure 9 shows ∆ρm as a function of anomaly depth.392

For theWenner-Schlumberger array, ∆ρm increases with anomaly depth, reach-393

ing up to 2-3 times the expected value. A much better estimate is obtained if394

no organic overburden is present (gray curves). For these cases, better quan-395

tifications of ρ−anom are possible and ∆ρm increases only slightly with depth. In396

the diffusion state, significantly smaller errors occur compared to other states397

of water percolation, especially in the presence of an organic overburden.398

As can be seen in Figure 8, the error in depth resolution is rather large. If399

an organic overburden is present, the thickness of this layer is overestimated,400

causing a shift in the vertical position of the anomaly of 0.3 to 0.4 m. It was401
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also observed that at greater depths, the position stays approximately the402

same for an anomaly expected at 0.75 m to 1.15 m depth. Again, in the case403

of a model without an organic overburden, the higher sensitivity due to higher404

resistivities near the surface makes better depth determination possible.405

For models simulated with the Dipole-Dipole array, errors for models with or-406

ganic overburden are significantly smaller than for the Wenner-Schlumberger407

array. However, the Dipole-Dipole array was shown to be very sensitive to408

noise and disturbances at the surface (like a stone pathway), to a point were409

measurements taken using this array could not be interpreted with the avail-410

able inversion routines.411

As a measure of the quality of the inversion, a simple criterion containing the412

model misfit M as the sum of all errors has been applied:413

M =
∑

Fi

|ρinv,i − ρgen,i| (8)414

where Fi is the i-th model block of the inversion domain discretisation.415

Comparison of M for the different states of water percolation (Fig. 10) shows416

that the diffusion state gives significantly better results. In this state, the misfit417

below the organic overburden and to the sides of the anomaly is much smaller,418

additionally the depth of the anomaly and overburden are better resolved.419

Figure 11 shows the spatial error distribution for each state. In the dry state,420

the biggest errors stem from an overestimated thickness of the overburden,421

which also entails further mispositioning of the anomaly. The anomaly itself is422

also vertically elongated, leading to considerable errors in the lower parts. In423

the diffusion state (Fig. 11 (b)), the resistivity contrast between overburden424

and wet sand is much smaller, due to a) the sand having a reduced resistivity425

as it is more saturated with water and b) the overburden being dryer as in426
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the previous states, resulting in a higher resistivity. As a consequence of this427

reduced resistivity contrast, the errors resulting from an incorrect overburden428

thickness are reduced as well.429

430

3.2.3 Ensemble431

For the case of the hydraulically resistive anomaly, the random set of param-432

eters is applied to generic models of all three different states of water perco-433

lation. To assure comparability, the random parameter set stays the same for434

each of the three models.435

A model with an anomaly at 0.75 m depth was used, including an organic436

overburden and using the Wenner-Schlumberger array. For each state, an en-437

semble of 50 inverted models was created. For simplification, only mean cluster438

members are shown. Figure 12 shows the five clusters per ensemble with the re-439

spective number of ensemble members. The respective ∆ρm is listed in Table 4.440

441

• Dry State: The rectangular shape of the anomaly is retrieved variably well,442

but for the models 4 and 5, where the thickness of the anomaly is smaller,443

a strong overestimation of resistivities is present in the lower part of the444

model (> 7000 Ωm instead of 5000 Ωm). The resistivity of the anomaly445

ρ−anom is much too high for all five models. For models 1 and 2 that contain446

most of the ensemble members, the anomaly is vertically elongated.447

• Infiltration State: In four models, the shape of the anomaly has been re-448

trieved quite well, but for model 10, two zones of minimal resistivity have449

been detected rather than the rectangular shape. In all models, ∆ρm is very450
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large compared to the expected resistivity of the anomaly ρ = 65 Ωm. Again,451

models 9 and 10 (same inversion parameters as model 4 and 5) overestimate452

the background resistivity at greater depth.453

• Diffusion State: The resistivity of the anomaly is detected with lower resis-454

tivity as in the infiltration state, closer to the expected resistivity of 45 Ωm.455

Again, in model 13 and 15, the strong inversion artifact is present near the456

bottom coinciding with the shape of the anomaly being retrieved quite well.457

These artifacts are not present in model 11, 12 and 14, where the anomaly is458

vertically elongated. Model 15 presents a mixed case of a slightly elongated459

anomaly and an artifact of smaller extent than in model 13.460

Table 4 shows, sorted for the cluster representatives, the misfits in the anomaly’s461

resistivity. While it is apparent that the errors are large in each case, they are462

again considerably smaller for the diffusion state.463

4 Discussion and Conclusion464

The ability of electrical resistivity tomography to accurately determine resis-465

tivity distributions was examined. A two-step model approach was used to466

create synthetic data sets. It comprises the modeling of soil water movement467

for synthetic soil data sets and a transfer into a model of generic resistivi-468

ties using a petrophysical relation. A forward-inverse cycle is used evaluate469

how well the geophysical inversion scheme can reconstruct the given soil data470

set and its water content. An ensemble and clustering approach is proposed471

because a single model deduced as the optimal model does not necessarily472

reproduce the expected resistivities accurately.473

The methods were applied to two case studies of simple soil models based on a474
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two-layered structure reproducing field observations. The first case simulates475

the infiltration of water through a cracked surfical sealing, and the second a476

hydraulically resistive anomaly in a sand layer.477

Key results of the forward-inverse modeling in this study include:478

• In the presence of large resistivity contrasts, e.g. a conductive organic over-479

burden, the retrieval of accurate resistivity values beneath this layer using480

the regularisation based inversion method applied in this study is not possi-481

ble. However, if the volume is monitored at various stages of water percola-482

tion, the retrieval quality can differ. Especially in the diffusion state, much483

better accuracy was possible.484

• The model misfit increases with depth, as the sensitivity of the inversion485

model to the data decreases.486

• In the absence of an organic overburden, a much better quantification is487

possible because of a lower resistivity contrast.488

• The numerical study showed that a Dipole-Dipole array provides more accu-489

rate inversions than the Wenner-Schlumberger array. However, in practical490

applications, it has to be ensured that the signal-to-noise ratio is sufficiently491

large.492

As a consequence, an ensemble approach was introduced that creates multiple493

inversion models for one data set by randomly choosing the inversion parame-494

ters from the possible (and numerically plausible) parameter space. By using495

clustering methods, averaged models representing different clusters in the en-496

semble can be created and compared. Key results of the ensemble approach497

include:498

499
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• Clustering of ensemble members allows an evaluation of the different possi-500

ble models that fit the data. Areas likely to be plagued by artifacts can be501

identified and the reliability of standard inverted models can be evaluated.502

• However, the quantification of resistivities is not considerably improved by503

ensembles. For example, it became apparent that resistivities retrieved with504

smaller misfits in one region can coincide with larger artifacts in other re-505

gions.506

• The clustering of ensembles allows an overview of the ensemble, without507

losing information about the ensemble.508

The ideas of the approaches presented here can easily be adapted to different509

models and inversion methods. For the specific inversion process with regular-510

isation used in this study, it can be concluded that a reliable quantification of511

resistivity values is not possible. The use of additional information, e.g. within512

a framework aiming at directly inverting or calculating hydrological proper-513

ties from collected data sets that not only contain resistivity measurements,514

but also data about the flow conditions, e.g. meteorological data, should be515

considered.516
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Constraint on the data robust or smooth

Constraint on the model robust or smooth

Initial damping λi 0.01 to 1

Minimal damping λm 0.05λi to 0.2λi

Convergence limit 1% to 9%

Maximal number of iterations 3, 5 or 15

Vertical to horizontal regularisation 0.25 to 4

Increase of damping with depth 1.0 to 2.0

Reduce effect of none, slight,

side blocks severe, very severe

Higher damping for first layer yes or no

Table 1

Parameter space of inversion parameters used for ensemble calculations.

rithms, covergence analysis and numerical comparisons. Statistical Com-629

putations 9, 907–921.630

Zhou, B., Dahlin, T., 2003. Properties and effects of measurement errors on631

2d resistivity imaging surveying. Near Surface Geophysics 1, 105–117.632
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Material θr θS α n KS [m/d]

Sand 0.045 0.361 4 2.2 17.28

Overburden 0.067 0.45 5.23 2.67 0.225

Table 2

Soil parameters for the van Genuchten-Mualem parameterisation. θr is the residual

water content, θS is the volumetric water content at full saturation, α and n are

parameters connected to the pore radii, and Ks is the hydraulic conductivity at

saturation.

Organic with without

overburden

Depth of 0.35 0.55 0.75 0.95 1.15

the anomaly [m]

State of percolation dry infiltration diffusion

ERT array WS DD

Table 3

Parameter variation for different soil models, infiltration state and measurement

geometry
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Cluster DRY Cluster INFILTRATION Cluster DIFFUSION

1) 381 6) 156 11) 49

2) 613 7) 294 12) 41

3) 228 8) 314 13) 86

4) 1068 9) 73 14) 62

5) 608 10) 292 15) 228

Table 4

Misfit for the cluster representative shown in Figure 12 (misfits in Ωm).
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Fig. 1. Charts visualizing the methodological steps involved in this study. Above:

Steps in the forward-inverse cycle. Below: Steps in the ensemble method.
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Fig. 2. Defective sealing, characteristic states of water percolation. (a) Dry State

(b) Infiltration State (c) Diffusion State.
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Fig. 3. Inverted models for the case of the defective sealing. (a) Dry State (b)

Infiltration State (c) Diffusion State.
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Fig. 4. Misfit of the anomaly for the case of the defective sealing, shown is the

resistivity contrast as the ratio plume divided by host material (x-axis) versus ∆ρm

of the the inverted model (y-axis).
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Fig. 5. Clustered ensemble with 50 possible models for the diffusion state of the case

of the defective sealing with an infiltration plume. The domains of the 5 clusters

are indicated by numbers and dividing lines.
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Fig. 6. Standard model (0) and averaged cluster models (1-5) for the case of the

defective sealing. In contrast to Figure 5, the clusters are sorted in descending order

by the number of ensemble members.

Fig. 7. States of the simulation of water movement through a model with a hy-

draulically resistive anomaly (rectangular block marked with thick black outline).

The layer boundary between organic overburden and sand is marked with a thin

horizontal line. (a) Dry State (b) Infiltration State (c) Diffusion State.
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Fig. 8. Generic and inverted models for the anomaly (Wenner-Schlumberger ar-

ray). (a) Dry State (b) Infiltration State (c) Diffusion State. The black rectangle

in the right column marks the location of the anomaly in the left column, the thin

horizontal line marks the layer boundary between organic overburden and sand.

Fig. 9. ∆ρm for cases with organic overburden (black lines) and without (gray lines).

Top row: Survey with Wenner-Schlumberger, bottom row: with Dipole-Dipole. The

left column shows the dry state, the middle column the infiltration state and the

right column the diffusion state.
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Fig. 10. Cumulative block misfits for the three stages of water percolation. Shown is

the logarithm of the sum of all errorsM for Wenner-Schlumberger and Dipole-Dipole

arrays and with or without an organic overburden.

Fig. 11. Misfit in resistivity distribution by model blocks for anomaly at 0.95 m

depth with organic overburden and Wenner-Schlumberger array.
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Fig. 12. Averaged cluster representatives for the resistive anomaly in the dry (left),

infiltration (middle) and diffusion (right) state.
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