000048860 001__ 48860
000048860 005__ 20180210140855.0
000048860 0247_ $$2pmid$$apmid:15997339
000048860 0247_ $$2DOI$$a10.1140/epje/i2005-10013-y
000048860 0247_ $$2WOS$$aWOS:000232026500002
000048860 037__ $$aPreJuSER-48860
000048860 041__ $$aeng
000048860 082__ $$a530
000048860 084__ $$2WoS$$aChemistry, Physical
000048860 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000048860 084__ $$2WoS$$aPhysics, Applied
000048860 084__ $$2WoS$$aPolymer Science
000048860 1001_ $$0P:(DE-HGF)0$$aCarbone, G.$$b0
000048860 245__ $$aCrack motion in viscoelastic solids: role of the flash temperature
000048860 260__ $$aBerlin$$bSpringer$$c2005
000048860 300__ $$a261
000048860 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000048860 3367_ $$2DataCite$$aOutput Types/Journal article
000048860 3367_ $$00$$2EndNote$$aJournal Article
000048860 3367_ $$2BibTeX$$aARTICLE
000048860 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000048860 3367_ $$2DRIVER$$aarticle
000048860 440_0 $$01985$$aEuropean Physical Journal E$$v17$$x1292-8941
000048860 500__ $$aRecord converted from VDB: 12.11.2012
000048860 520__ $$aWe present a simple theory of crack propagation in viscoelastic solids. We calculate the energy per unit area, G(v), to propagate a crack, as a function of the crack tip velocity v. Our study includes the non-uniform temperature distribution (flash temperature) in the vicinity of the crack tip, which has a profound influence on G(v). At very low crack tip velocities, the heat produced at the crack tip can diffuse away, resulting in very small temperature increase: in this "low-speed" regime the flash temperature effect is unimportant. However, because of the low heat conductivity of rubber-like materials, already at moderate crack tip velocities a very large temperature increase (of order of 1000 K) can occur close to the crack tip. We show that this will drastically affect the viscoelastic energy dissipation close to the crack tip, resulting in a "hot-crack" propagation regime. The transition between the low-speed regime and the hot-crack regime is very abrupt, which may result in unstable crack motion, e.g. stick-slip motion or catastrophic failure, as observed in some experiments. In addition, the high crack tip temperature may result in significant thermal decomposition within the heated region, resulting in a liquid-like region in the vicinity of the crack tip. This may explain the change in surface morphology (from rough to smooth surfaces) which is observed as the crack tip velocity is increased above the instability threshold.
000048860 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000048860 588__ $$aDataset connected to Web of Science, Pubmed
000048860 650_7 $$2WoSType$$aJ
000048860 7001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b1$$uFZJ
000048860 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/i2005-10013-y$$gVol. 17, p. 261$$p261$$q17<261$$tThe @European physical journal / E$$v17$$x1292-8941$$y2005
000048860 8567_ $$uhttp://dx.doi.org/10.1140/epje/i2005-10013-y
000048860 909CO $$ooai:juser.fz-juelich.de:48860$$pVDB
000048860 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000048860 9141_ $$y2005
000048860 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000048860 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000048860 970__ $$aVDB:(DE-Juel1)76694
000048860 980__ $$aVDB
000048860 980__ $$aConvertedRecord
000048860 980__ $$ajournal
000048860 980__ $$aI:(DE-Juel1)PGI-1-20110106
000048860 980__ $$aUNRESTRICTED
000048860 981__ $$aI:(DE-Juel1)PGI-1-20110106