000004910 001__ 4910
000004910 005__ 20200402205620.0
000004910 0247_ $$2pmid$$apmid:19422016
000004910 0247_ $$2DOI$$a10.1002/cm.20375
000004910 0247_ $$2WOS$$aWOS:000266466700005
000004910 0247_ $$2ISSN$$a1949-3584
000004910 037__ $$aPreJuSER-4910
000004910 041__ $$aeng
000004910 082__ $$a590
000004910 084__ $$2WoS$$aCell Biology
000004910 1001_ $$0P:(DE-Juel1)VDB71075$$aMöhl, C.$$b0$$uFZJ
000004910 245__ $$aBecoming Stable and Strong: The Interplay between Vinculin Exchange Dynamics and Adhesion Strength During Adhesion Site Maturation
000004910 260__ $$aBognor Regis$$bWiley$$c2009
000004910 300__ $$a350 - 364
000004910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000004910 3367_ $$2DataCite$$aOutput Types/Journal article
000004910 3367_ $$00$$2EndNote$$aJournal Article
000004910 3367_ $$2BibTeX$$aARTICLE
000004910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000004910 3367_ $$2DRIVER$$aarticle
000004910 440_0 $$020941$$aCell Motility and the Cytoskeleton$$v66$$x0886-1544$$y6
000004910 500__ $$aContract grant sponsors: BFHZ, BaCaTec, and DAAD.
000004910 520__ $$aThe coordinated formation and release of focal adhesions is necessary for cell attachment and migration. According to current models, these processes are caused by temporal variations in protein composition. Protein incorporation into focal adhesions is believed to be controlled by phosphorylation. Here, we tested the exchange dynamics of GFP-vinculin as marker protein of focal adhesions using the method of Fluorescence Recovery After Photobleaching. The relevance of the phosphorylation state of the protein, the age of focal adhesions and the acting force were investigated. For stable focal adhesions of stationary keratinocytes, we determined an exchangeable vinculin fraction of 52% and a recovery halftime of 57 s. Nascent focal adhesions of moving cells contained a fraction of exchanging vinculin of 70% with a recovery halftime of 36 s. Upon maturation, mean saturation values and recovery halftimes decreased to levels of 49% and 42 s, respectively. Additionally, the fraction of stably incorporated vinculin increased with cell forces and decreased with vinculin phosphorylation within these sites. Experiments on a nonphosphorylatable vinculin mutant construct at phosphorylation site tyr1065 confirmed the direct interplay between phosphorylation and exchange dynamics of adhesion proteins during adhesion site maturation.
000004910 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000004910 588__ $$aDataset connected to Web of Science, Pubmed
000004910 650_2 $$2MeSH$$aCell Adhesion: physiology
000004910 650_2 $$2MeSH$$aCell Movement: physiology
000004910 650_2 $$2MeSH$$aCells, Cultured
000004910 650_2 $$2MeSH$$aFluorescence Recovery After Photobleaching
000004910 650_2 $$2MeSH$$aFocal Adhesions: metabolism
000004910 650_2 $$2MeSH$$aHumans
000004910 650_2 $$2MeSH$$aKeratinocytes: cytology
000004910 650_2 $$2MeSH$$aKeratinocytes: metabolism
000004910 650_2 $$2MeSH$$aPhosphorylation: physiology
000004910 650_2 $$2MeSH$$aVinculin: genetics
000004910 650_2 $$2MeSH$$aVinculin: metabolism
000004910 650_7 $$0125361-02-6$$2NLM Chemicals$$aVinculin
000004910 650_7 $$2WoSType$$aJ
000004910 65320 $$2Author$$avinculin
000004910 65320 $$2Author$$aFRAP
000004910 65320 $$2Author$$aexchange dynamics
000004910 65320 $$2Author$$afocal adhesion
000004910 65320 $$2Author$$acell force
000004910 65320 $$2Author$$atyrosine phosphorylation
000004910 7001_ $$0P:(DE-Juel1)VDB8902$$aKirchgeßner, N.$$b1$$uFZJ
000004910 7001_ $$0P:(DE-Juel1)VDB8500$$aSchäfer, C.$$b2$$uFZJ
000004910 7001_ $$0P:(DE-Juel1)VDB26956$$aKüpper, K.$$b3$$uFZJ
000004910 7001_ $$0P:(DE-Juel1)161241$$aBorn, S.$$b4$$uFZJ
000004910 7001_ $$0P:(DE-HGF)0$$aDiez, G.$$b5
000004910 7001_ $$0P:(DE-HGF)0$$aGoldmann, W.H.$$b6
000004910 7001_ $$0P:(DE-Juel1)128833$$aMerkel, R.$$b7$$uFZJ
000004910 7001_ $$0P:(DE-Juel1)VDB27696$$aHoffmann, B.$$b8$$uFZJ
000004910 773__ $$0PERI:(DE-600)2536522-8$$a10.1002/cm.20375$$gVol. 66, p. 350 - 364$$p350 - 364$$q66<350 - 364$$tCell Motility and the Cytoskeleton$$v66$$x0886-1544$$y2009
000004910 8567_ $$uhttp://dx.doi.org/10.1002/cm.20375
000004910 909CO $$ooai:juser.fz-juelich.de:4910$$pVDB
000004910 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000004910 9141_ $$y2009
000004910 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000004910 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000004910 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000004910 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000004910 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000004910 9201_ $$0I:(DE-Juel1)VDB802$$d31.12.2010$$gIBN$$kIBN-4$$lBiomechanik$$x0
000004910 970__ $$aVDB:(DE-Juel1)112244
000004910 980__ $$aVDB
000004910 980__ $$aConvertedRecord
000004910 980__ $$ajournal
000004910 980__ $$aI:(DE-Juel1)ICS-7-20110106
000004910 980__ $$aUNRESTRICTED
000004910 981__ $$aI:(DE-Juel1)IBI-2-20200312
000004910 981__ $$aI:(DE-Juel1)ICS-7-20110106