001     49227
005     20240709094257.0
024 7 _ |2 DOI
|a 10.1016/j.jpowsour.2005.01.036
024 7 _ |2 WOS
|a WOS:000232743600005
037 _ _ |a PreJuSER-49227
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Electrochemistry
084 _ _ |2 WoS
|a Energy & Fuels
100 1 _ |a Shiratori, Yu.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB58234
245 _ _ |a Influence of impurities on the conductivity of composites in the system (3YSZ)1-x-(MgO)x
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2005
300 _ _ |a 32 - 42
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Power Sources
|x 0378-7753
|0 3727
|v 148
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a (3YSZ)(1-x)-(MgO)(x) form composites above x = 0.15, which consist of stabilized-zirconia and magnesia. Electrical conductivities of the two-phase composites were measured by the four-probe DC technique. Negative influences of impurities such as SiO2 on the conductivity are discussed with the aid of microstructural investigations using SEM and TEM. In the investigated composites, the impurities do not directly affect the electrical conduction as current blockers at grain boundaries as usually observed in pure YSZ electrolytes. Microstructural investigation using HRTEM revealed that grain boundaries of the stabilized zirconia are very clean because the silicon and aluminum oxide impurities react with MgO to form discrete Mg2SiO4 and MgAl2O4 grains in the electrolytes, respectively. A theoretical approach taking into consideration continuous volumes of existing phases reveals that the conductivity of the two-phase composites depends on the phase continuity. The reduction of the continuity of the zirconia phase is the main reason for the decrease of conductivity in the present system. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Brennstoffzelle
|c E01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK246
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a solid oxide fuel cell
653 2 0 |2 Author
|a solid electrolytes
653 2 0 |2 Author
|a two-phase composite
653 2 0 |2 Author
|a electrical conductivity
700 1 _ |a Tietz, F.
|b 1
|u FZJ
|0 P:(DE-Juel1)129667
700 1 _ |a Penkalla, H.-J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB85249
700 1 _ |a He, J. Q.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB11177
700 1 _ |a Shiratori, Yo.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB58237
700 1 _ |a Stöver, D.
|b 5
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1016/j.jpowsour.2005.01.036
|g Vol. 148, p. 32 - 42
|p 32 - 42
|q 148<32 - 42
|0 PERI:(DE-600)1491915-1
|t Journal of power sources
|v 148
|y 2005
|x 0378-7753
856 7 _ |u http://dx.doi.org/10.1016/j.jpowsour.2005.01.036
909 C O |o oai:juser.fz-juelich.de:49227
|p VDB
913 1 _ |k E01
|v Brennstoffzelle
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK246
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 1
920 1 _ |k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB5
|x 0
920 1 _ |k IWV-2
|l Werkstoffstruktur und Eigenschaften
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB2
|x 2
970 _ _ |a VDB:(DE-Juel1)77103
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21