000049230 001__ 49230
000049230 005__ 20180210123328.0
000049230 0247_ $$2DOI$$a10.1016/j.jappgeo.2005.02.001
000049230 0247_ $$2WOS$$aWOS:000230774800003
000049230 037__ $$aPreJuSER-49230
000049230 041__ $$aeng
000049230 082__ $$a620
000049230 084__ $$2WoS$$aGeosciences, Multidisciplinary
000049230 084__ $$2WoS$$aMining & Mineral Processing
000049230 1001_ $$0P:(DE-Juel1)VDB26790$$aNguyen, F.$$b0$$uFZJ
000049230 245__ $$aImage processing of 2D resistivity data for imaging faults
000049230 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2005
000049230 300__ $$a260 - 277
000049230 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049230 3367_ $$2DataCite$$aOutput Types/Journal article
000049230 3367_ $$00$$2EndNote$$aJournal Article
000049230 3367_ $$2BibTeX$$aARTICLE
000049230 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049230 3367_ $$2DRIVER$$aarticle
000049230 440_0 $$014681$$aJournal of Applied Geophysics$$v57$$x0926-9851
000049230 500__ $$aRecord converted from VDB: 12.11.2012
000049230 520__ $$aA methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images, This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an 1(1) norm (blocky inversion) as optimization method, For the synthetic cases. three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 in covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5 1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness or 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (similar to 1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects. (c) 2005 Elsevier B.V. All rights reserved.
000049230 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000049230 588__ $$aDataset connected to Web of Science
000049230 650_7 $$2WoSType$$aJ
000049230 65320 $$2Author$$aactive faults
000049230 65320 $$2Author$$afault surveys
000049230 65320 $$2Author$$aimage processing
000049230 65320 $$2Author$$aelectrical tomography
000049230 65320 $$2Author$$anear-surface geophysics
000049230 7001_ $$0P:(DE-HGF)0$$aGarambois, S.$$b1
000049230 7001_ $$0P:(DE-HGF)0$$aJongmans, D.$$b2
000049230 7001_ $$0P:(DE-HGF)0$$aPirard, E.$$b3
000049230 7001_ $$0P:(DE-HGF)0$$aLoke, M. H.$$b4
000049230 773__ $$0PERI:(DE-600)1496997-x$$a10.1016/j.jappgeo.2005.02.001$$gVol. 57, p. 260 - 277$$p260 - 277$$q57<260 - 277$$tJournal of applied geophysics$$v57$$x0926-9851$$y2005
000049230 8567_ $$uhttp://dx.doi.org/10.1016/j.jappgeo.2005.02.001
000049230 909CO $$ooai:juser.fz-juelich.de:49230$$pVDB
000049230 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000049230 9141_ $$y2005
000049230 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000049230 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000049230 970__ $$aVDB:(DE-Juel1)77106
000049230 980__ $$aVDB
000049230 980__ $$aConvertedRecord
000049230 980__ $$ajournal
000049230 980__ $$aI:(DE-Juel1)IBG-3-20101118
000049230 980__ $$aUNRESTRICTED
000049230 981__ $$aI:(DE-Juel1)IBG-3-20101118