000049230 001__ 49230 000049230 005__ 20180210123328.0 000049230 0247_ $$2DOI$$a10.1016/j.jappgeo.2005.02.001 000049230 0247_ $$2WOS$$aWOS:000230774800003 000049230 037__ $$aPreJuSER-49230 000049230 041__ $$aeng 000049230 082__ $$a620 000049230 084__ $$2WoS$$aGeosciences, Multidisciplinary 000049230 084__ $$2WoS$$aMining & Mineral Processing 000049230 1001_ $$0P:(DE-Juel1)VDB26790$$aNguyen, F.$$b0$$uFZJ 000049230 245__ $$aImage processing of 2D resistivity data for imaging faults 000049230 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2005 000049230 300__ $$a260 - 277 000049230 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000049230 3367_ $$2DataCite$$aOutput Types/Journal article 000049230 3367_ $$00$$2EndNote$$aJournal Article 000049230 3367_ $$2BibTeX$$aARTICLE 000049230 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000049230 3367_ $$2DRIVER$$aarticle 000049230 440_0 $$014681$$aJournal of Applied Geophysics$$v57$$x0926-9851 000049230 500__ $$aRecord converted from VDB: 12.11.2012 000049230 520__ $$aA methodology to locate automatically limits or boundaries between different geological bodies in 2D electrical tomography is proposed, using a crest line extraction process in gradient images, This method is applied on several synthetic models and on field data set acquired on three experimental sites during the European project PALEOSIS where trenches were dug. The results presented in this work are valid for electrical tomographies data collected with a Wenner-alpha array and computed with an 1(1) norm (blocky inversion) as optimization method, For the synthetic cases. three geometric contexts are modelled: a vertical and a dipping fault juxtaposing two different geological formations and a step-like structure. A superficial layer can cover each geological structure. In these three situations, the method locates the synthetic faults and layer boundaries, and determines fault displacement but with several limitations. The estimated fault positions correlate exactly with the synthetic ones if a conductive (or no superficial) layer overlies the studied structure. When a resistive layer with a thickness of 6 in covers the model, faults are positioned with a maximum error of 1 m. Moreover, when a resistive and/or a thick top layer is present, the resolution significantly decreases for the fault displacement estimation (error up to 150%). The tests with the synthetic models for surveys using the Wenner-alpha array indicate that the proposed methodology is best suited to vertical and horizontal contacts. Application of the methodology to real data sets shows that a lateral resistivity contrast of 1:5 1:10 leads to exact faults location. A fault contact with a resistivity contrast of 1:0.75 and overlaid by a resistive layer with a thickness or 1 m gives an error location ranging from 1 to 3 m. Moreover, no result is obtained for a contact with very low contrasts (similar to 1:0.85) overlaid by a resistive soil. The method shows poor results when vertical gradients are greater than horizontal ones. This kind of image processing technique should be systematically used for improving the objectiveness of tomography interpretation when looking for limits between geological objects. (c) 2005 Elsevier B.V. All rights reserved. 000049230 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0 000049230 588__ $$aDataset connected to Web of Science 000049230 650_7 $$2WoSType$$aJ 000049230 65320 $$2Author$$aactive faults 000049230 65320 $$2Author$$afault surveys 000049230 65320 $$2Author$$aimage processing 000049230 65320 $$2Author$$aelectrical tomography 000049230 65320 $$2Author$$anear-surface geophysics 000049230 7001_ $$0P:(DE-HGF)0$$aGarambois, S.$$b1 000049230 7001_ $$0P:(DE-HGF)0$$aJongmans, D.$$b2 000049230 7001_ $$0P:(DE-HGF)0$$aPirard, E.$$b3 000049230 7001_ $$0P:(DE-HGF)0$$aLoke, M. H.$$b4 000049230 773__ $$0PERI:(DE-600)1496997-x$$a10.1016/j.jappgeo.2005.02.001$$gVol. 57, p. 260 - 277$$p260 - 277$$q57<260 - 277$$tJournal of applied geophysics$$v57$$x0926-9851$$y2005 000049230 8567_ $$uhttp://dx.doi.org/10.1016/j.jappgeo.2005.02.001 000049230 909CO $$ooai:juser.fz-juelich.de:49230$$pVDB 000049230 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0 000049230 9141_ $$y2005 000049230 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000049230 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0 000049230 970__ $$aVDB:(DE-Juel1)77106 000049230 980__ $$aVDB 000049230 980__ $$aConvertedRecord 000049230 980__ $$ajournal 000049230 980__ $$aI:(DE-Juel1)IBG-3-20101118 000049230 980__ $$aUNRESTRICTED 000049230 981__ $$aI:(DE-Juel1)IBG-3-20101118