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Abstract: A new fast method of order O(N) is proposed to calculate inter-
action energies and forces in molecular systems with open boundaries, exerted
by long range Coulomb interactions. The method consists of a fast multigrid
Poisson solver for the far field smooth part of the potential and a particle-
particle based method for the near field contribution. Boundary conditions are
calculated with a multipole expansion method. Test cases are conducted for
performance measurements of the method.
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1 Introduction

Coulomb interactions often play a crucial role for static and dynamical proper-
ties in a variety of complex systems, characterized by polar or charged system
componends, e.g. polar liquids, proteins, DNA, membranes, polyelectrolytes or
plasmas. Due to the long range nature of these interactions their determination
is computationally very demanding. Since pair interactions of all particles in
the system have to be taken into account, the problem has intrinsic complexity
O(N?). Therefore the size of the systems or length of the system trajectory is
mainly limited by the computational overhead induced by electrostatic interac-
tions. Due to the great interest in systems, dominated by Coulomb interactions,
there was great effort spent in developing faster and more efficient methods
with a lower complexity. For systems with periodic boundary conditions the
most widely used method is the Ewald summation technique which is formally
an exact analogue of an infinite lattice sum. Practically a small, controlable
truncation error is accepted and it could be shown that for a given error, the
method scales like O(N3/2) [1]. A faster variant of this method was later on
developed, using fast Fourier transform techniques to reduce the complexity
to O(Nlog(N)) [2]. A modification of the Ewald summation is the so called
particle-particle particle-mesh method (P3M) which solves the field equation
with a fast Fourier method, using a modified Green’s function, which adjusts
the solution closely to the continuum solution. The method splits the field into
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near and far field contributions, where the short range part is calculated by
an explicit particle-particle summation. Due to the fast Fourier transform the
complexity is again reduced to O(N log(N)) [3].

For open systems, mainly two fast methods are in use, which both profit from
a multipole expansion of far field contributions of charges to the local field. The
Barnes-Hut tree algorithm splits the contributions hierarchically to end up in an
O(Nlog(N)) complexity [4], while the Fast Multipole Method (FMM) reduces
this complexity to O(N) by taking into account interactions of multipoles [5].

In the present article a new method for open systems is proposed which goes
in line with the idea of the P2M method, i.e. the near- and far-field contributions
are treated in seperate ways. The idea here is to apply the multigrid (MG)
method to the solution of Poisson’s equation to calculate a global potential
energy surface. Normally, this problem would consist in an O(N?) complexity.
However, multigrid methods reduce this complexity to O(N), making them very
attractive to many body problems. Having the global solution it is required to
correct for the self energy of the particles and the contributions from the near
field part. This is performed via subtracting the grid based Green’s function.
In a last step the near field part is calculated as a pair-sum over all neigbored
particles. In the following the mathematical basis is shown and performance
measurements are compared with explicit pair-wise calculations.

2 Theory

In this section a description of the different steps, involved into the calculation
of the interaction energies and forces is given.

Multigrid Solution of the Poisson Equation

Consider the Poisson equation for the potential energy ®, subject to Dirichlet
boundary conditions,

Ad(r) = —p(r) , reQ (1)
B(r) = ¥(r) , redn 2)

where p is the charge density and ®°(r) the known field, created by the N
charges on the surface of the system. To apply multigrid techniques the equa-
tion is discretized, i.e. the Laplace operator translates into a finite difference
approximation, A — Dy, where h indicates the mesh spacing. The charges in
the system are smeared onto the grid points via Cloud In Cell (CIC) weighting
functions w [3], resulting in the grid based charge density

A~ 1 |5 i,a|
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where C'(h) are those cells which share grid point h and dr; o are relative particle
coordinates with respect to grid point h (in the following grid based functions




are indicated with 7 *”). The idea of multigrid [6] is now to solve the Poisson
equation on a hierarchy of fine and coarse grids with finite difference schemes.
In the present work a 4th-order compact solver is used [7] in combination with a
Gauss-Seidel relaxation scheme. On the finest grid the operator D), works on the
field ®,, giving an approximation <i>;1 It can be shown [6] that the resulting error
ép, with respect to the exact solution itself obeys a Poisson equation, Dpép =
—7h, where the source term consists of the residuum left in the relaxation step.
Solving for the error gives therefore a correction to the first approximation. The
error correction is done on the next coarser grid with mesh size H = 2h, where
the residuum is restricted from h — H via a restriction operator, gy = IH#),. Tt
is found that the high frequency components of the error are rapidly removed on
a given grid. Therefore coarsening the grid results in the fact that low fequency
components from the fine grid are transformed into high frequency components
on the coarse grid, which can be efficiently removed. In so doing the hierarchy of
grids is refined until only one mesh point is relaxed, which is done exactly. The
calculated error is then transferred back down the hierachy of grids as correction
term to the field solution. This so called V-cycle is performed several times until
a threshold value for the remaining residuum is reached.

Boundary Conditions

Solving the Poisson equation subject to Dirichlet boundary conditions requires
the knowledge of the surface potential ®°. For an arbitrary distribution of N
charges in the system, the evaluation on each boundary grid point j consists of
the sum CI>§S) = Zfil ¢iG(|rs; —r;|), where G is the Green’s function. Assum-
ing that the number of grid points increases linearly with number of particles,
this approach results in a complexity of O(N®/3). This would mean that the
determination of the boundary potential would be more time consuming from a
certain number of particles than the evaluation of the global field ® by multigrid
methods. To avoid this drawback, a multipole expansion method is used here,
which scales linearly in the number of particles. The surface potential is thereby
evaluated as

2

e(r,) = 3 L (4)
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The sum over all charges ¢; is therefore split into two terms which factorise
into two functions depending only on the set of particle coordinates {r} and
the surface coordinates. Therefore the function w;™ is only calculated once for
a given particle distribution as

{r} Z ¢ 07" (r;) (6)



and used as a prefactor for the boundary potential of each grid point rs. The
multipole expansions M;™(rs) and O}*(r;) are given by [§]

1

O (r;) = Tim le(cos(ﬁn))e*im(sam) (7)
1 ,
Mlm(rs) = F(l — |m|)' le(COS(ﬁTS))el7n(<Prs) (8)

and the P are associated Legendre polynomials. The angles ¥, and ¢, are
spherical coordinates of the positions r; and rs in the given coordinate system.
Validity of the multipole expansion is only given, if r;/rs < 1. Therefore the
length of the computational domain Lp has to be larger than the region of
length L, where charges are located, i.e. Lp > +/3L. For practical purposes, it
is chosen here L = 2L.

Self Energy and Near Field Correction

The solution of the discretized Poisson equation gives a global potential surface
éh({r}), including contributions from all charges. To calculate the interaction
energy u; = q;¢; of particle ¢ with all other particles, one has to find the proper
potential function ¢; , = (i’h({r}|r¢ ¢ {r}), i.e. the potential which would be
obtained if particle ¢ was not considered in the solution of Poisson’s equation.
The solution of this problem is to subtract the self energy contribution from
é({r}) It is clear that the superposition principle is valid in electrostatics.
Therefore the global solution of ®;, would also be obtained if a sum over all
single particle potentials ¢; , would be performed, i.e.

on({r}) = > awG(lrn — rw)) 9)
v

where G(|r, — rj|) is the grid based Green’s function, which is finite for |rj —
rp/| = 0. This function depends on the solver, which is used in the multigrid
cycle. Conveniently it is calculated numerically, placing a unit charge in the
centre of a grid with mesh size h and solving Poisson’s equation for this problem.
In general, particles are located between grid points and their charge is smeared
onto the grid. In a 3-dimensial system this results in eight partial charges §; p, for
each particle. Therefore each particle gets contributions from eight neighbor grid
points to its potential and all these potential values ¢; ;, have to be corrected.
Due to the grid based solution there will be discritization errors, which
are most pronounced in the neighbor regions of a particle. Therefore, a more
accurate solution will be obtained when applying also near field corrections,
i.e. subtracting the grid based solution and calculate explicitly pair-interactions
from the neighbored grid cells. Therefore the whole potential energy for particle
1 is given as
bi= > wlri =)0 + o) (10)
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where

o = dm) = oy - ol (11)
¢Enear) _ Z q; (12)
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where C; is the cell, where particle  is located and w(r) = w(z)w(y)w(z) is the
CIC weighting function (cf. Eq.3). Furthermore, the grid based self energy and
near field energy contributions are given by

¢(self) = Z Ginw G(rn — i) (13)
h'eC;
o =N > GwG(rn —rw) (14)
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In Eq.13 the sum extends over all grid points of cell C;, where particle ¢ is

located. In Eqs.12,14 C; & C), is the local cell plus neighbor cells C,, which are

taken into account for the near field correction. The first sum in Eq.14 runs

over all grid points, belonging to cells, the second over all particles, located in

these cells.

Evaluation of Forces

The next step in using the described method for molecular simulations is to
calculate the forces. To this end the grid based electric fields are calculated via
a finite difference scheme of the potential differences, while the near field part
is calculated explicitly, i.e.

~(far 1 n n
El(J; Qo= T (¢i7h+1 - (bz}hfl) (15)
Brw) = Y gele) (16)
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where h + 1 means grid point h plus or minus 1 in direction «. The resulting
forces are then obtained from an interpolation of grid functions to particle ¢, i.e.

Fia=a Y wr;—rp)ES" + gEN" (17)
heC,

3 Results and Conclusions

In order to test the performance of the method, systems with different numbers
of particles were calculated with the multigrid method and compared with ex-
plicit pair wise summations. For the test cases equilibrated systems of Lennard-
Jones particles were chosen. For electrostatic test calculations, charges of 41
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Figure 1: Timings for multigrid method compared with explicit pairwise sum-
mation for different average number of particles per cell.

were distributed randomly onto particles subject to the condition Zi\;l q¢ = 0.
The boundary potential was calculated with a multipole expansion up to level
[ = 10. Fig.1 shows results for different cases, where the average number of
particles per cell was varied. According to the number of particles, the number
of grid points ny in each direction was varied between n, = 23 +1,...,26 4+ 1.
First of all the linear increase of CPU time with number of particles is recovered
from the figure. Furthermore it is seen that one particle per cell is the fastest
version. A crossover at &~ 5000 particles is observed, where the multigrid algo-
rithm gets faster than explicit summations. It is furthermore found that relative
error norms, ||F — F(2) | /|F(®)|| of the forces are in the range of ~ 2%. This
estimate refers to the choice of one neighbor cell layer for the near field part,
ie. #(C,) = 3% —1 = 26 in Egs. 12,14. Taking into account more layers of
neighbor cells (#(Cp,) = 5% — 1,73 — 1,...), will increase the accuracy, but will
also decrease the performance. On the lowest level, this makes the method at
the moment only moderatley accurate, compared with other methods. Higher
accuracy is to be expected by using a more refined splitting of near and far field
contributions, by increasing the near field part (as mentioned), by other meth-
ods of charge assignment to the mesh points or higher order approximations to
Eq. 15. Finally we note that the method will also be applicable for periodic
boundary conditions. In this case no multipole expansion of the boundary po-
tential is required and slightly better results are to be expected. Work in this
direction is in progress.
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