000049560 001__ 49560
000049560 005__ 20240709074000.0
000049560 0247_ $$2WOS$$aWOS:000241970700003
000049560 037__ $$aPreJuSER-49560
000049560 041__ $$aeng
000049560 082__ $$a580
000049560 084__ $$2WoS$$aPlant Sciences
000049560 1001_ $$0P:(DE-HGF)0$$aYonemujra, S.$$b0
000049560 245__ $$aUptake of carbonyl sulfide (COS) and emission of dimethyl sulfide (DMS) by plants
000049560 260__ $$aHorn, NÖ$$bBerger$$c2005
000049560 300__ $$a17 - 24
000049560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049560 3367_ $$2DataCite$$aOutput Types/Journal article
000049560 3367_ $$00$$2EndNote$$aJournal Article
000049560 3367_ $$2BibTeX$$aARTICLE
000049560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049560 3367_ $$2DRIVER$$aarticle
000049560 440_0 $$014762$$aPhyton - Annales Rei Botanicae$$v45$$x0079-2047$$y4
000049560 500__ $$aRecord converted from VDB: 12.11.2012
000049560 520__ $$aHigher plants represent a significant sink for atmospheric carbonyl sulfide (COS) and a potential source of dimethyl sulfide (DMS). In the present work, COS uptake was investigated on various plant species (Quercus robur, Juniperus excelso, Hibiscus spec., Sorghum bicolor) differing in the activities of carbonic anhydrase (CA), the enzyme recognized responsible for COS consumption. COS uptake was observed for all plant species, and the range of COS consumption was 1.5-25 pmol m(-2) s(-1) (deposition velocity 1.2-10.6 mm s(-1)). The COS uptake was found to be light-independent, but was strongly under stomatal control. For the C-3 plant species the uptake rates were well correlated with the inherent capacity of CA, a fact that may confer a comfortable tool to model COS uptake by plants, and ultimately may help to decrease the uncertainty in estimates of the global COS sink strength of vegetation. S. bicolor, owing a C-4 metabolism and respective low CA activity, exhibited a relatively high COS uptake rate as compared to the C-3 plants. Potential reasons for this deviation are discussed. Emission of DMS was species-specific and was only observed in case of Hibiscus spec. under light conditions.
000049560 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000049560 588__ $$aDataset connected to Web of Science
000049560 650_7 $$2WoSType$$aJ
000049560 65320 $$2Author$$acarbonyl sulfide
000049560 65320 $$2Author$$adimethyl sulfide
000049560 65320 $$2Author$$aleaf
000049560 65320 $$2Author$$acarbonic anhydrase
000049560 7001_ $$0P:(DE-HGF)0$$aSandoval-Soto, J. S. K.$$b1
000049560 7001_ $$0P:(DE-HGF)0$$aKesselmeier, J.$$b2
000049560 7001_ $$0P:(DE-HGF)0$$aKuhn, U.$$b3
000049560 7001_ $$0P:(DE-Juel1)VDB14301$$avon Hobe, M.$$b4$$uFZJ
000049560 7001_ $$0P:(DE-HGF)0$$aYakir, D.$$b5
000049560 7001_ $$0P:(DE-HGF)0$$aKawashima, F. J.$$b6
000049560 773__ $$0PERI:(DE-600)2580798-5$$gVol. 45, p. 17 - 24$$p17 - 24$$q45<17 - 24$$tPhyton$$v45$$x0079-2047$$y2005
000049560 909CO $$ooai:juser.fz-juelich.de:49560$$pVDB
000049560 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000049560 9141_ $$y2005
000049560 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000049560 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000049560 970__ $$aVDB:(DE-Juel1)77562
000049560 980__ $$aVDB
000049560 980__ $$aConvertedRecord
000049560 980__ $$ajournal
000049560 980__ $$aI:(DE-Juel1)IEK-7-20101013
000049560 980__ $$aUNRESTRICTED
000049560 981__ $$aI:(DE-Juel1)ICE-4-20101013
000049560 981__ $$aI:(DE-Juel1)IEK-7-20101013