000049652 001__ 49652
000049652 005__ 20240610120554.0
000049652 0247_ $$2DOI$$a10.1088/0953-8984/17/45/032
000049652 0247_ $$2WOS$$aWOS:000235394200033
000049652 037__ $$aPreJuSER-49652
000049652 041__ $$aeng
000049652 082__ $$a530
000049652 084__ $$2WoS$$aPhysics, Condensed Matter
000049652 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ
000049652 245__ $$aVesicle dynamics in shear and capillary flows
000049652 260__ $$aBristol$$bIOP Publ.$$c2005
000049652 300__ $$as3439 - s3444
000049652 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049652 3367_ $$2DataCite$$aOutput Types/Journal article
000049652 3367_ $$00$$2EndNote$$aJournal Article
000049652 3367_ $$2BibTeX$$aARTICLE
000049652 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049652 3367_ $$2DRIVER$$aarticle
000049652 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v17$$x0953-8984
000049652 500__ $$aRecord converted from VDB: 12.11.2012
000049652 520__ $$aThe deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape.
000049652 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000049652 588__ $$aDataset connected to Web of Science
000049652 650_7 $$2WoSType$$aJ
000049652 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000049652 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/17/45/032$$gVol. 17, p. s3439 - s3444$$ps3439 - s3444$$q17<s3439 - s3444$$tJournal of physics / Condensed matter$$v17$$x0953-8984$$y2005
000049652 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/17/45/032
000049652 909CO $$ooai:juser.fz-juelich.de:49652$$pVDB
000049652 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000049652 9141_ $$y2005
000049652 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000049652 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0
000049652 970__ $$aVDB:(DE-Juel1)77675
000049652 980__ $$aVDB
000049652 980__ $$aConvertedRecord
000049652 980__ $$ajournal
000049652 980__ $$aI:(DE-Juel1)ICS-2-20110106
000049652 980__ $$aUNRESTRICTED
000049652 981__ $$aI:(DE-Juel1)IBI-5-20200312
000049652 981__ $$aI:(DE-Juel1)IAS-2-20090406
000049652 981__ $$aI:(DE-Juel1)ICS-2-20110106