000049652 001__ 49652 000049652 005__ 20240610120554.0 000049652 0247_ $$2DOI$$a10.1088/0953-8984/17/45/032 000049652 0247_ $$2WOS$$aWOS:000235394200033 000049652 037__ $$aPreJuSER-49652 000049652 041__ $$aeng 000049652 082__ $$a530 000049652 084__ $$2WoS$$aPhysics, Condensed Matter 000049652 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ 000049652 245__ $$aVesicle dynamics in shear and capillary flows 000049652 260__ $$aBristol$$bIOP Publ.$$c2005 000049652 300__ $$as3439 - s3444 000049652 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000049652 3367_ $$2DataCite$$aOutput Types/Journal article 000049652 3367_ $$00$$2EndNote$$aJournal Article 000049652 3367_ $$2BibTeX$$aARTICLE 000049652 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000049652 3367_ $$2DRIVER$$aarticle 000049652 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v17$$x0953-8984 000049652 500__ $$aRecord converted from VDB: 12.11.2012 000049652 520__ $$aThe deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape. 000049652 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0 000049652 588__ $$aDataset connected to Web of Science 000049652 650_7 $$2WoSType$$aJ 000049652 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000049652 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/17/45/032$$gVol. 17, p. s3439 - s3444$$ps3439 - s3444$$q17<s3439 - s3444$$tJournal of physics / Condensed matter$$v17$$x0953-8984$$y2005 000049652 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/17/45/032 000049652 909CO $$ooai:juser.fz-juelich.de:49652$$pVDB 000049652 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0 000049652 9141_ $$y2005 000049652 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000049652 9201_ $$0I:(DE-Juel1)VDB31$$d31.12.2006$$gIFF$$kIFF-TH-II$$lTheorie II$$x0 000049652 970__ $$aVDB:(DE-Juel1)77675 000049652 980__ $$aVDB 000049652 980__ $$aConvertedRecord 000049652 980__ $$ajournal 000049652 980__ $$aI:(DE-Juel1)ICS-2-20110106 000049652 980__ $$aUNRESTRICTED 000049652 981__ $$aI:(DE-Juel1)IBI-5-20200312 000049652 981__ $$aI:(DE-Juel1)IAS-2-20090406 000049652 981__ $$aI:(DE-Juel1)ICS-2-20110106