001     49652
005     20240610120554.0
024 7 _ |2 DOI
|a 10.1088/0953-8984/17/45/032
024 7 _ |2 WOS
|a WOS:000235394200033
037 _ _ |a PreJuSER-49652
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Noguchi, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB37578
245 _ _ |a Vesicle dynamics in shear and capillary flows
260 _ _ |a Bristol
|b IOP Publ.
|c 2005
300 _ _ |a s3439 - s3444
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics: Condensed Matter
|x 0953-8984
|0 3703
|v 17
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1088/0953-8984/17/45/032
|g Vol. 17, p. s3439 - s3444
|p s3439 - s3444
|q 17|0 PERI:(DE-600)1472968-4
|t Journal of physics / Condensed matter
|v 17
|y 2005
|x 0953-8984
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/17/45/032
909 C O |o oai:juser.fz-juelich.de:49652
|p VDB
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-TH-II
|l Theorie II
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB31
|x 0
970 _ _ |a VDB:(DE-Juel1)77675
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21