001     49730
005     20230426083059.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.72.125341
|2 DOI
024 7 _ |a WOS:000232229400107
|2 WOS
024 7 _ |a 2128/1017
|2 Handle
037 _ _ |a PreJuSER-49730
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Kohlstedt, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB3107
245 _ _ |a Theoretical current-voltage characteristics of ferroelectric tunnel junctions
260 _ _ |a College Park, Md.
|b APS
|c 2005
300 _ _ |a 125341
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 72
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of an internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the nonvolatile memory applications because of a larger resistance on/off ratio.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
542 _ _ |i 2005-09-29
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Pertsev, N. A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB3050
700 1 _ |a Contreras, J. R.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB58659
700 1 _ |a Waser, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)131022
773 1 8 |a 10.1103/physrevb.72.125341
|b American Physical Society (APS)
|d 2005-09-29
|n 12
|p 125341
|3 journal-article
|2 Crossref
|t Physical Review B
|v 72
|y 2005
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.72.125341
|g Vol. 72, p. 125341
|p 125341
|n 12
|q 72<125341
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 72
|y 2005
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.72.125341
|u http://hdl.handle.net/2128/1017
856 4 _ |u https://juser.fz-juelich.de/record/49730/files/77779.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49730/files/77779.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49730/files/77779.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49730/files/77779.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:49730
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)77779
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
999 C 5 |a 10.1103/PhysRev.36.1604
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. Sommerfeld
|y 1933
|2 Crossref
|t Handbuch der Physik
|o A. Sommerfeld Handbuch der Physik 1933
999 C 5 |a 10.1007/BF01340420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 C. B. Duke
|y 1969
|2 Crossref
|t Solid State Physics
|o C. B. Duke Solid State Physics 1969
999 C 5 |y 1969
|2 Crossref
|t Tunneling Phenomena in Solids
|o Tunneling Phenomena in Solids 1969
999 C 5 |1 E. L. Wolf
|y 1985
|2 Crossref
|t Principles of Tunneling Spectroscopy
|o E. L. Wolf Principles of Tunneling Spectroscopy 1985
999 C 5 |a 10.1109/77.80745
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J.-M. Slaughter
|y 2003
|2 Crossref
|t Nanoelectronics and Information Technology, Advanced Electronic Materials and Novel Devices
|o J.-M. Slaughter Nanoelectronics and Information Technology, Advanced Electronic Materials and Novel Devices 2003
999 C 5 |a 10.1103/PhysRevB.54.R8357
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.118651
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Z. Sun
|y 1998
|2 Crossref
|o J. Z. Sun 1998
999 C 5 |a 10.1103/PhysRevB.61.R14905
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.5182
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 J. Valasek
|y 1920
|2 Crossref
|o J. Valasek 1920
999 C 5 |1 L. Esaki
|y 1971
|2 Crossref
|o L. Esaki 1971
999 C 5 |1 L. L. Chang
|y 1971
|2 Crossref
|o L. L. Chang 1971
999 C 5 |a 10.1080/10584589808202046
|9 -- missing cx lookup --
|1 J. Scott
|p 1 -
|2 Crossref
|t Ferroelectr. Rev.
|v 1
|y 1998
999 C 5 |a 10.1063/1.122374
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.R5563
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1339207
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 H. Kohlstedt
|y 2002
|2 Crossref
|t Ferroelectric Thin Films X
|o H. Kohlstedt Ferroelectric Thin Films X 2002
999 C 5 |a 10.1063/1.1582366
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1627944
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(72)91180-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.30.384
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.124536
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.067601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1098252
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.126469
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.205426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1427406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature01501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1092508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/36069
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.175
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.357693
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. L. Bir
|y 1974
|2 Crossref
|t Symmetry and Strain Induced Effects in Semiconductors
|o G. L. Bir Symmetry and Strain Induced Effects in Semiconductors 1974
999 C 5 |a 10.1007/978-3-7091-9495-9
|1 V. L. Bonch-Bruevich
|2 Crossref
|9 -- missing cx lookup --
|y 1982
999 C 5 |a 10.1063/1.1702682
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1659141
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.115263
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.15303
|9 -- missing cx lookup --
|1 M. Kumagai
|p 15 -
|2 Crossref
|t Phys. Rev. B
|v 57
|y 1998
999 C 5 |a 10.1134/1.1356136
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 F. Jona
|y 1962
|2 Crossref
|t Ferroelectric Crystals
|o F. Jona Ferroelectric Crystals 1962
999 C 5 |a 10.1080/00150199608230247
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/978-3-662-04307-3
|1 J. F. Scott
|2 Crossref
|9 -- missing cx lookup --
|y 2000
999 C 5 |a 10.1063/1.1621731
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.80.1082
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00150199208015605
|9 -- missing cx lookup --
|1 D. R. Tilley
|p 313 -
|2 Crossref
|t Ferroelectrics
|v 134
|y 1992
999 C 5 |a 10.1103/PhysRevB.59.11257
|9 -- missing cx lookup --
|1 Y. Watanabe
|p 11 -
|2 Crossref
|t Phys. Rev. B
|v 59
|y 1999
999 C 5 |a 10.1063/1.1434542
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/10584589508012276
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1313275
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1435067
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1729774
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1109/16.753713
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.357589
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.123539
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.371404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.1988
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0022-0248(02)01985-1
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21