001     49733
005     20200423204301.0
017 _ _ |a This version is available at the following Publisher URL: http://apl.aip.org
024 7 _ |a 10.1063/1.1977183
|2 DOI
024 7 _ |a WOS:000230090000049
|2 WOS
024 7 _ |a 2128/1019
|2 Handle
037 _ _ |a PreJuSER-49733
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Nagarajan, V.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Nanoscale polarization relaxation in a polycrystalline ferroelectric thin film: role of local environments
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2005
300 _ _ |a 262910
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Applied Physics Letters
|x 0003-6951
|0 562
|v 86
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In this letter, we report on the study of nanoscale polarization relaxation phenomena in polycrystalline PbZr0.4Ti0.6O3 films. Piezoresponse force microscopy (PFM) images of the as-grown sample reveal grains with a range of contrast, from fully white to gray to fully black. It is shown that this local change in the contrast (magnitude) of the piezoresponse from grain to grain can be attributed to the crystallographic orientation within each grain. PFM-based relaxation experiments show that the rate of relaxation is different for each grain, furthermore it is strongly dependent on the tilt of individual crystallographic orientation with respect to the polar axis. Strongly tilted away nonpolar axis grains show a much stronger decay of the polarization compared to polar axis-oriented grains. Therefore, for an ensemble of grains under a common top electrode, the relaxation events would first take place in grains, which are nonpolar axis oriented. (c) 2005 American Institute of Physics.
536 _ _ |a Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|c I01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK252
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Aggarwal, S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Gruverman, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Ramesh, R.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1063/1.1977183
|g Vol. 86, p. 262910
|p 262910
|q 86<262910
|0 PERI:(DE-600)1469436-0
|t Applied physics letters
|v 86
|y 2005
|x 0003-6951
856 7 _ |u http://dx.doi.org/10.1063/1.1977183
|u http://hdl.handle.net/2128/1019
856 4 _ |u https://juser.fz-juelich.de/record/49733/files/77782.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49733/files/77782.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49733/files/77782.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49733/files/77782.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:49733
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k I01
|v Materialien, Prozesse und Bauelemente für die Mikro- und Nanoelektronik
|l Informationstechnologie mit nanoelektronischen Systemen
|b Information
|0 G:(DE-Juel1)FUEK252
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
970 _ _ |a VDB:(DE-Juel1)77782
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21