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We present a method for hierarchical clustering of data called mutual information clustering
(MIC) algorithm. It uses mutual information (MI) as a similarity measure and exploits its grouping
property: The MI between three objects X,Y, and Z is equal to the sum of the MI between X
and Y, plus the MI between Z and the combined object (XY). We use this both in the Shannon
(probabilistic) version of information theory and in the Kolmogorov (algorithmic) version. We apply
our method to the construction of phylogenetic trees from mitochondrial DNA sequences and to the
output of independent components analysis (ICA) as illustrated with the ECG of a pregnant woman.

Classification or organizing of data is very important
in all scientific disciplines and is fundamental for under-
standing and learning [1]. Classification can be exclusive
or overlapping, supervised or unsupervised. In the follow-
ing we will be interested only in exclusive unsupervised
classification, called clustering.

An instance of a clustering problem consist of a set of
objects and a set of properties (called characteristic vec-
tor) for each object. The goal of clustering is separation
of objects into groups using only the characteristic vec-
tors. Cluster analysis organizes data either as a single
grouping of individuals into non-overlapping clusters or
as a hierarchy of nested partitions. The latter is called
hierarchical clustering (HC). Because of wide spread of
applications, there are a large variety of different cluster-
ing methods in usage, see e.g. [1] for an overview.

The crucial point of all clustering algorithms is the
choice of a proximity measure. This is obtained from the
characteristic vectors and can be either an indicator for
similarity or dissimilarity. In the latter case it is conve-
nient but not obligatory to satisfy the standard axioms
of a metric (positivity, symmetry, and triangle inequal-
ity). Among HC methods one should distinguish between
those where one uses the characteristic vectors only at the
first level of the hierarchy and derives the proximities be-
tween clusters from the proximities of their constituents,
and methods where the proximities are calculated each
time from their characteristic vectors. The latter strat-
egy (which is used also in the present paper) allows of
course for more flexibility but might also be computa-
tionally more costly.

Quite generally, the “objects” to be clustered can be
either single (finite) patterns (e.g. DNA sequences) or
random variables, i.e. probability distributions. In the
latter case the data are usually supplied in form of a sta-
tistical sample, and one of the simplest and most widely
used similarity measures is the linear (Pearson) corre-
lation coefficient. But this is not sensitive to nonlinear
dependencies which do not manifest themselves in the
covariance and can thus miss important features. This
is in contrast to mutual information (MI) which is also
singled out by its information theoretic background [2].
Indeed, MI is zero only if the two random variables are

strictly independent.

Another important feature of MI is that it has also
an “algorithmic” cousin, defined within algorithmic (Kol-
mogorov) information theory [3] which measures the sim-
ilarity between individual objects. For a thorough discus-
sion of distance measures based on algorithmic MI and
for their application to clustering, see [4, 5].

Essential for the present application is the grouping
property of MI,

I(X,Y,Z) = I(X,Y)+I((X,Y), Z). (1)

Within Shannon information theory this is an exact the-
orem, while it is true in the algorithmic version up to
the usual logarithmic correction terms [3]. Since X,Y,
and Z can be themselves composite, Eq.(1) can be used
recursively for a cluster decomposition of MI. This mo-
tivates the main idea of our clustering method: instead
of using e.g. centers of masses in order to treat clusters
like individual objects in an approximative way only, we
treat them exactly like individual objects when using MI
as proximity measure and We thus propose the following
scheme for clustering n objects with MIC:

(1) Compute a proximity matrix based on pairwise mu-
tual informations; assign n clusters such that each cluster
contains exactly one object;

(2) find the two closest clusters ¢ and j;

(3) create a new cluster (ij) by combining ¢ and j;

(4) delete the lines/columns with indices ¢ and j from the
proximity matrix, and add one line/column containing
the proximities between cluster (ij) and all other clus-
ters;

(5) if the number of clusters is still > 2, goto (2); else
join the two clusters and stop.

Shannon Theory: Here, X = X;,Y = Xo,... are
random variables. If they are discrete, entropies are de-
fined as usual H(X) = — >, pi(X)logpi(X) etc. The
MI is defined as

n

X)) = H(Xy) - H(Xq,. ..
k=1

I(Xy,.. Xn). (2)

Eq.(1) can be checked easily, together with its general-
ization to arbitrary groupings. It means that MI can be



decomposed into hierarchical levels. By iterating it, one
can decompose I(X;...X,) for any n > 2 and for any
partitioning of the set (X7 ...X,) into the MIs between
elements within one cluster and MIs between clusters.

For continuous variables with densities ux etc., one
first introduces some binning (‘coarse-graining’), and ap-
plies the above to the binned variables. If x is a vector
with dimension m and each bin has Lebesgue measure
A, then p;(X) =~ px (x)A™ with = chosen suitably in bin
i, and

Hygu(X) = H(X) — mlog A 3)

where the differential entropy is given by
) =~ [dops(@logxla). (@)

Notice that Hypin(X) is a true (average) information and
is thus non-negative, but H(X) is not an information, can
be negative, and is not invariant under homeomorphisms
Joint entropies, conditional entropies, and MI are de-
fined as above, with sums replaced by integrals. Like
H(X), joint and conditional entropies are neither posi-
tive (semi-)definite nor invariant. But MI, defined as

_ . 2 Io pxy(z,y)
Ix.y) = //d dy nxv(@,y) | gﬂx(x)NY(y) - 6

~

is non-negative and invariant under z — ¢(x) and y —
¥(y). Tt is (the limit of) a true information,

I(X,Y) = lim [Hyin(X) + Hyin(Y) = Hyiw(X,Y)]. (6)

In applications, one usually has the data available in
form of N sample points (x;,;), ¢ = 1,... N which are
assumed to be i.i.d. realizations. There exist numerous
algorithms to estimate I(X,Y’) and entropies. We use
in the following the MI estimators proposed recently in
Ref. [6], and we refer to this paper for a review of alter-
native methods.

Algorithmic Information Theory: In contrast to
Shannon theory where the basic objects are random vari-
ables and entropies are average informations, algorithmic
information theory deals with individual symbol strings
and with the actual information needed to specify them.
To “specify” a sequence X means here to give the neces-
sary input to a universal computer U, such that U prints
X on its output and stops. The analogon to entropy,
called here usually the complexity K(X) of X, is the
minimal length of an input which leads to the output
X, for fixed U. It depends on U, but it can be shown
that this dependence is weak and can be neglected in the
limit when K (X) is large [3].

Let us denote the concatenation of two strings X and
Y as XY. Its complexity is K (XY). It is intuitively clear
that K (XY') should be larger than K(X) but cannot be

larger than the sum K(X)+ K(Y). Finally, one expects
that K(X|Y), defined as the minimal length of a program
printing X when Y is furnished as auxiliary input, is
related to K(XY) — K(Y). Indeed, one can show [3]
(again within correction terms which become irrelevant
asymptotically) that

0< K(X|Y)~K(XY)-K(Y)<K(X). (7)

Notice the close similarity with Shannon entropy. The
algorithmic information in Y about X is finally

Lig(X,Y) = K(X)=K(X|Y) ~ K(X)+K(Y)=K(XY),

(8)
and similarly for more than two strings. Within the same
additive correction terms, one shows that it is symmet-
ric, Tug(X,Y) = Lug(Y,X), and can thus serve as an
analogon to mutual information.

K (X) is in general not computable. But one can easily
give upper bounds: The length of any input which pro-
duces X (e.g. by spelling it out verbatim) is an upper
bound. Improved upper bounds are provided by any file
compression algorithm.

MI-Based Distance Measures: When comparing
objects with different marginal or joint informations, it
seems intuitively clear that one should prefer relative dis-
tances over absolute ones, in order to minimize the de-
pendence on the total information. We here use the quan-
tity [4, 7]

I(X,Y)

DX, Y)=1 HX.Y) 9)
which is a metric , with D(X,X) = 0 and D(X,Y) <
1 for all pairs (X,Y). The algorithmic version is also
uniwversal: If X =~ Y according to any non-trivial distance
measure, then X ~ Y also according to D.

A difficulty appears in the Shannon framework, if we
deal with continuous random variables. As we men-
tioned above, H(X,Y) is not invariant under homeomor-
phisms (including rescalings) and not even positive defi-
nite, while Hy;y, diverges when A — 0. We thus modified
Eq.(9) by replacing H(X,Y) by Hpin(X,Y) and replac-
ing D(X,Y’) by the similarity measure

S(X,Y) = lim (D(X,Y) —1)log A = m

. (10)
A—0 Mg + My

A Phylogenetic Tree for Mammals: We study
the mitochondrial DNA of a group of 34 mammals (see
Fig. 1). The same data [8] had previously been analyzed
in [4, 9]. This group includes among others some rodents,
ferungulates, and primates.

Obviously we are here dealing with the algorithmic
version of information theory, and informations are es-
timated by lossless data compression. For constructing
the proximity matrix between individual taxa, we pro-
ceed essentially as in Ref. [4], using the special compres-
sion program GenCompress [10].
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FIG. 1: Phylogenetic tree for 34 mammals. The heights of
nodes are the distances between the joining daughter clusters.

In Ref. [4], this proximity matrix was then used as the
input to a standard HC algorithm (neighbour-joining and
hypercleaning) to produce an evolutionary tree. Instead
we use the MIC algorithm with distance D(X,Y’). The
joining of two clusters is obtained by simply concate-
nating the DNA sequences. There is of course an arbi-
trariness in the order of concatenation sequences: XY
and Y X give in general compressed sequences of differ-
ent lengths. But we found this to have negligible effect
on the evolutionary tree.

The overall structure of this tree closely resembles the
one shown in Ref. [9]. All primates are correctly clustered
and also the relative order of the ferungulates (blue whale
to horse) is in accordance with Ref. [9]. On the other
hand, there are a number of connections which obviously
do not reflect the true evolutionary tree, see for example
the guinea pig with bat and elephant with platypus. But
the latter two, inspite of being joined together, have a
very large distance from each other, thus their clustering
just reflects the fact that neither the platypus nor the
elephant have other close relatives in the sample. All in
all, however, already the results shown in Fig. 1 capture
surprisingly well the overall structure shown in Ref. [9].
Dividing MI by the total information is essential for this
success. If we had used the non-normalized Iz (X,Y) it-
self, the clustering algorithm used in [4] would not change
much, since all 34 DNA sequences have roughly the same
length. But our MIC algorithm would be completely
screwed up: After the first cluster formation, we have
DNA sequences of very different lengths, and longer se-
quences tend also to have larger MI, even if they are not
closely related.

The concatenation of X and Y will of course not lead
to a plausible sequence of the common ancestor, but it

optimally represents the information about it. This in-
formation is essential to find the correct way through
higher hierarchy levels of the evolutionary tree, and it is
preserved in concatenating.

Clustering of Minimally Dependent Compo-
nents in an Electrocardiogram: As our second ap-
plication we choose a case where Shannon theory is the
proper setting. We show in Fig. 2 an ECG recorded from
the abdomen and thorax of a pregnant woman [11]. Tt
is already seen from this graph that there are at least
two important components in this ECG: the heartbeat
of the mother and of the fetus. In addition there is
noise from various sources (muscle activity, measurement
noise, etc.). While it is easy to detect anomalies in the
mother’s ECG from such a recording, it would be difficult
to detect them in the fetal ECG.

As a first approximation we can assume that the to-
tal ECG is a linear superposition of several independent
sources (mother, child, noise;, noises,...). A standard
method to disentangle such superpositions is indepen-
dent component analysis (ICA) [12]. There, one tries
to recover the sources by means of linear transformation
si(t) = 37—, Wija;(t), where W;; is determined by min-
imizing the estimated MI between the s;.

In reality things are not so simple. For instance, the
sources might not be independent, the number of sources
(including noise sources!) might be different from the
number of channels, and the mixing might involve de-
lays. For the present case this implies that the heartbeat
of the mother is seen in several reconstructed components
si, and that the “independent” components are not in-
dependent at all. In particular, all components s; which
have large contributions from the mother form a clus-
ter with large intra-cluster MIs and small inter-cluster
MIs. The same is true for the fetal ECG, albeit less
pronounced. To obtain clean recordings of the fetal and
maternal ECGs, we proceeded as follows [13].

Since we expect different delays in the different chan-
nels, we first used Takens delay embedding [14] with time
delay 0.002 s and embedding dimension 3, resulting in 24
channels. We then formed 24 linear combinations s;(t).
We use the MI estimator [6], for details see [7]. Five of
the resulting least dependent components contain strong
contributions of the mother’s heartbeat, three are domi-
nated by the fetus. The rest contains mostly noise [7].

In plotting the actual dendrogram (Fig. 3) we used
S(X,Y) for the cluster analysis but used the MI of
the clusters to determine the height at which the two
branches join. The MI of the first five channels, e.g., is
~ 1.44 nats, while that of channels 6 to 8 is &~ 0.3 nats.
For any two clusters (tuples) X = X;...X,, and Y =
Y1...Y,, one has I(X,Y) > I(X) + I(Y). This guar-
antees, if the MI is estimated correctly, that the tree is
drawn properly. The two slight glitches (when clusters
(1 - 14) and (15 - 18) join, and when (21 - 22) is joined
with 23) result from small errors in estimating MI. They
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FIG. 2: ECG of a pregnant woman (sampling rate 500 Hz).
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FIG. 3: Dendrogram for least dependent components.

do in no way effect our conclusions.

In Fig. 3 one can clearly see two big clusters corre-
sponding to the mother and to the child. There are also
some small clusters which should be considered as noise.
For reconstructing the mother and child contributions to
Fig. 2, we have to decide on one specific clustering from
the entire hierarchy. We decided to make the cut at inter-
cluster MI equal to 0.1, i.e. two clusters X and Y are
joined whenever I((X), (Y))=I(X,Y)-I(X)—I(Y) >
0.1. Reconstructing the first five traces of the original
ECG from the child components only, we obtain Fig. 4.

In summary, we have shown that MI can not only be
used as a proximity measure in clustering, but that it also
suggests a conceptually very simple and natural hierar-
chical clustering algorithm. We do not claim that this
algorithm, called mutual information clustering (MIC),
is always superior to other algorithms. Indeed, MI is in
general not easy to estimate. Obviously, when only crude
estimates are possible, also MIC will not give very good
results. But as MI estimates are becoming better, also
the results of MIC should improve. The present paper
was partly triggered by the development of a new class
of MI estimators for continuous random variables which
have very small bias and also rather small variances [6].
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FIG. 4: ECG where all contributions except those of the child
cluster have been removed.

We have illustrated our method with two applications,
one from genetics and one from cardiology. For neither
application MIC might give optimal clustering, but it
seems promising that one common method gives decent
results for both, although they are very different.

The results of MIC should improve, if more data be-
come available. This is trivial, if we mean by that longer
time sequences in the application to ECG, and longer
parts of the genome. It is less trivial that we expect MIC
to make fewer mistakes in a phylogenetic tree, when more
species are included. The reason is that close-by species
will be correctly joined anyhow, and families — which
now are represented only by single species and thus are
poorly characterized — will be much better described by
the concatenated genomes if more species are included.
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[1] A.K. Jain and R.C.Dubes, Algorithms for Clustering
Data (Prentice Hall, Englewood Cliffs, NJ, 1988).

[2] T.M. Cover and J.A. Thomas, Flements of Information
Theory (Wiley, New York 1991).

[3] M. Li and P. Vitanyi, An Introduction to Kolmogorov
Complezity and its Applications, 2nd ed. (Springer, New
York 1997).

[4] M. Li et al., Bioinformatics, 17, 149 (2001).

[5] M. Li et al., e-print CC/0111054 (2002).

[6] A. Kraskov, H. Stogbauer and P. Grassberger, e-print
cond-mat,/0305641 (2003).

[7] A.Kraskov, H. Stogbauer, R.G. Andrzejak, and P. Grass-
berger, to be published

[8] http://www.ncbi.nlm.nih.gov/

[9] A. Reyes et al., Mol. Biol. Evol. 17, 979 (2000).
[10] http://www.cs.ucsb.edu/~mli/Bioinf/software/index.html
[11] B.L.R. De Moor, ed., www.esat.kuleuven.ac.be/sista/daisy

(1997).

[12] A. Hyvérinen, J. Karhunen, and E. Oja, Independent
Component Analysis (Wiley, New York 2001).

[13] H. Stogbauer, A. Kraskov, and P. Grassberger, to be pub-
lished

[14] F. Takens. In Dynamical Systems and Turbulence, eds.
D.A. Rand and L.S. Young, Springer Lecture Notes in
Mathematics 898, page 366 (Springer, Berlin 1980).



