000049849 001__ 49849
000049849 005__ 20230426083059.0
000049849 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000049849 0247_ $$2DOI$$a10.1103/PhysRevB.72.224437
000049849 0247_ $$2WOS$$aWOS:000234335600073
000049849 0247_ $$2Handle$$a2128/1430
000049849 037__ $$aPreJuSER-49849
000049849 041__ $$aeng
000049849 082__ $$a530
000049849 084__ $$2WoS$$aPhysics, Condensed Matter
000049849 1001_ $$0P:(DE-Juel1)VDB37196$$aLounis, S.$$b0$$uFZJ
000049849 245__ $$aNoncollinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)
000049849 260__ $$aCollege Park, Md.$$bAPS$$c2005
000049849 300__ $$a224437
000049849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049849 3367_ $$2DataCite$$aOutput Types/Journal article
000049849 3367_ $$00$$2EndNote$$aJournal Article
000049849 3367_ $$2BibTeX$$aARTICLE
000049849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049849 3367_ $$2DRIVER$$aarticle
000049849 440_0 $$04919$$aPhysical Review B$$v72$$x1098-0121
000049849 500__ $$aRecord converted from VDB: 12.11.2012
000049849 520__ $$aMagnetic nanostructures on nonmagnetic or magnetic substrates have attracted strong attention due to the development of interesting experimental methods with atomic resolution. Motivated by this progress we have extended the full-potential Korringa-Kohn-Rostoker Green-function method to treat noncollinear magnetic nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001), and investigate the size and orientation of the local moments and, moreover, the stabilization of noncollinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear, noncollinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling between the impurities and the substrate. We find that Cr and Mn first-neighboring dimers and a Mn trimer on Ni(001) show noncollinear behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some of the noncollinear ab initio results to those obtained within a classical Heisenberg model, where the exchange constants are fitted to total energies of the collinear states; the agreement is surprisingly good.
000049849 536__ $$0G:(DE-Juel1)FUEK242$$2G:(DE-HGF)$$aKondensierte Materie$$cM02$$x0
000049849 542__ $$2Crossref$$i2005-12-30$$uhttp://link.aps.org/licenses/aps-default-license
000049849 588__ $$aDataset connected to Web of Science
000049849 650_7 $$2WoSType$$aJ
000049849 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Ph.$$b1$$uFZJ
000049849 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b2$$uFZJ
000049849 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b3$$uFZJ
000049849 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.72.224437$$bAmerican Physical Society (APS)$$d2005-12-30$$n22$$p224437$$tPhysical Review B$$v72$$x1098-0121$$y2005
000049849 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.72.224437$$gVol. 72, p. 224437$$n22$$p224437$$q72<224437$$tPhysical review / B$$v72$$x1098-0121$$y2005
000049849 8567_ $$uhttp://hdl.handle.net/2128/1430$$uhttp://dx.doi.org/10.1103/PhysRevB.72.224437
000049849 8564_ $$uhttps://juser.fz-juelich.de/record/49849/files/77980.pdf$$yOpenAccess
000049849 8564_ $$uhttps://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000049849 8564_ $$uhttps://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000049849 8564_ $$uhttps://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000049849 909CO $$ooai:juser.fz-juelich.de:49849$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000049849 9131_ $$0G:(DE-Juel1)FUEK242$$bMaterie$$kM02$$lKondensierte Materie$$vKondensierte Materie$$x0
000049849 9141_ $$y2005
000049849 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000049849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000049849 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000049849 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000049849 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x2
000049849 970__ $$aVDB:(DE-Juel1)77980
000049849 980__ $$aVDB
000049849 980__ $$aJUWEL
000049849 980__ $$aConvertedRecord
000049849 980__ $$ajournal
000049849 980__ $$aI:(DE-Juel1)VDB381
000049849 980__ $$aI:(DE-Juel1)PGI-1-20110106
000049849 980__ $$aI:(DE-Juel1)PGI-2-20110106
000049849 980__ $$aUNRESTRICTED
000049849 980__ $$aFullTexts
000049849 9801_ $$aFullTexts
000049849 981__ $$aI:(DE-Juel1)PGI-1-20110106
000049849 981__ $$aI:(DE-Juel1)PGI-2-20110106
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.057201
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/344524a0
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.262.5131.218
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/35000508
000049849 999C5 $$1A. Oswald$$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(86)90802-4$$p1247 -$$tJ. Magn. Magn. Mater.$$v54-57$$y1986
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/16/2/002
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.340744
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/18/3/018
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/51/015
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(93)90867-2
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/3/39/013
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.5564
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.024415
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4420
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.014447
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0038-1098(90)90491-S
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.134402
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.53.2512
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.5601
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.3622
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.11556
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.4205
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.8807
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.9400
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.10074
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-8853(96)00489-1
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.84
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.80.4574
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.184407
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.133.A1594
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4608/15/1/021
000049849 999C5 $$1S. H. Vosko$$2Crossref$$oS. H. Vosko 1980$$y1980
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(90)90009-P
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/3/39/006
000049849 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0304-8853(87)90721-9