001     49849
005     20230426083059.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.72.224437
|2 DOI
024 7 _ |a WOS:000234335600073
|2 WOS
024 7 _ |a 2128/1430
|2 Handle
037 _ _ |a PreJuSER-49849
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Lounis, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB37196
245 _ _ |a Noncollinear Korringa-Kohn-Rostoker Green function method: Application to 3d nanostructures on Ni(001)
260 _ _ |a College Park, Md.
|b APS
|c 2005
300 _ _ |a 224437
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 72
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Magnetic nanostructures on nonmagnetic or magnetic substrates have attracted strong attention due to the development of interesting experimental methods with atomic resolution. Motivated by this progress we have extended the full-potential Korringa-Kohn-Rostoker Green-function method to treat noncollinear magnetic nanostructures on surfaces. We focus on magnetic 3d impurity nanoclusters, sitting as adatoms on or in the first surface layer on Ni(001), and investigate the size and orientation of the local moments and, moreover, the stabilization of noncollinear magnetic solutions. While clusters of Fe, Co, Ni atoms are magnetically collinear, noncollinear magnetic coupling is expected for Cr and Mn clusters on surfaces of elemental ferromagnets. The origin of frustration is the competition of the antiferromagnetic exchange coupling among the Cr or Mn atoms with the antiferromagnetic (for Cr) or ferromagnetic (for Mn) exchange coupling between the impurities and the substrate. We find that Cr and Mn first-neighboring dimers and a Mn trimer on Ni(001) show noncollinear behavior nearly degenerate with the most stable collinear configuration. Increasing the distance between the dimer atoms leads to a collinear behavior, similar to the one of the single impurities. Finally, we compare some of the noncollinear ab initio results to those obtained within a classical Heisenberg model, where the exchange constants are fitted to total energies of the collinear states; the agreement is surprisingly good.
536 _ _ |a Kondensierte Materie
|c M02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK242
|x 0
542 _ _ |i 2005-12-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Mavropoulos, Ph.
|b 1
|u FZJ
|0 P:(DE-Juel1)130823
700 1 _ |a Dederichs, P. H.
|b 2
|u FZJ
|0 P:(DE-Juel1)130612
700 1 _ |a Blügel, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.72.224437
|b American Physical Society (APS)
|d 2005-12-30
|n 22
|p 224437
|3 journal-article
|2 Crossref
|t Physical Review B
|v 72
|y 2005
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.72.224437
|g Vol. 72, p. 224437
|p 224437
|n 22
|q 72<224437
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 72
|y 2005
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.72.224437
|u http://hdl.handle.net/2128/1430
856 4 _ |u https://juser.fz-juelich.de/record/49849/files/77980.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49849/files/77980.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:49849
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k M02
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|0 G:(DE-Juel1)FUEK242
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k CNI
|l Center of Nanoelectronic Systems for Information Technology
|d 14.09.2008
|g CNI
|z 381
|0 I:(DE-Juel1)VDB381
|x 1
920 1 _ |k IFF-TH-I
|l Theorie I
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB30
|x 0
920 1 _ |k IFF-TH-III
|l Theorie III
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB32
|x 2
970 _ _ |a VDB:(DE-Juel1)77980
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
999 C 5 |a 10.1103/PhysRevLett.89.057201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/344524a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.262.5131.218
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/35000508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(86)90802-4
|9 -- missing cx lookup --
|1 A. Oswald
|p 1247 -
|2 Crossref
|t J. Magn. Magn. Mater.
|v 54-57
|y 1986
999 C 5 |a 10.1088/0305-4608/16/2/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.340744
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0305-4608/18/3/018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/1/51/015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(93)90867-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/39/013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.5564
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.024415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.4420
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.014447
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0038-1098(90)90491-S
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.134402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.53.2512
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.5601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.3622
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.11556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.4205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.8807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.9400
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.10074
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0304-8853(96)00489-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.84
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.80.4574
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.184407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.133.A1594
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0305-4608/15/1/021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. H. Vosko
|y 1980
|2 Crossref
|o S. H. Vosko 1980
999 C 5 |a 10.1016/0010-4655(90)90009-P
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/3/39/006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(87)90721-9
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21