000049906 001__ 49906
000049906 005__ 20240712101009.0
000049906 0247_ $$2DOI$$a10.1029/2005JD006068
000049906 0247_ $$2WOS$$aWOS:000236270600001
000049906 0247_ $$2ISSN$$a0141-8637
000049906 0247_ $$2Handle$$a2128/20478
000049906 037__ $$aPreJuSER-49906
000049906 041__ $$aeng
000049906 082__ $$a550
000049906 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000049906 1001_ $$0P:(DE-Juel1)VDB44076$$aToenges-Schuller, N.$$b0$$uFZJ
000049906 245__ $$aGlobal distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations
000049906 260__ $$aWashington, DC$$bUnion$$c2006
000049906 300__ $$aD05312
000049906 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000049906 3367_ $$2DataCite$$aOutput Types/Journal article
000049906 3367_ $$00$$2EndNote$$aJournal Article
000049906 3367_ $$2BibTeX$$aARTICLE
000049906 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000049906 3367_ $$2DRIVER$$aarticle
000049906 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v111$$x0148-0227
000049906 500__ $$aRecord converted from VDB: 12.11.2012
000049906 520__ $$a[1] Nitrogen oxides play a key role in tropospheric chemistry; to study the distribution patterns of the corresponding anthropogenic emissions ( fossil, industrial, waste), we use three independent data sources: GOME measurements of the tropospheric NO2 column density fields, the EDGAR 3 emission inventory as an estimation of the anthropogenic NOx emissions and nighttime images of worldwide human settlements seen by the DMSP OLS satellite instrument as a proxy for these emission patterns. The uncertainties are not known precisely for any of the fields. Using the MOZART-2 CTM, tropospheric column density fields are calculated from the emission estimates, and transformations are developed to turn the GOME columns into anthropogenic emission fields. Assuming the errors of the three data sources ( GOME, EDGAR, lights) to be independent, we are able to determine ranges for the pattern errors of the column density fields and values for the pattern errors of the source fields by a correlation analysis that connects relative error (co) variances and correlation coefficients. That method was developed for this investigation but can generally be used to calculate relative error variances of data sets, if the errors of at least three of them can be assumed to be independent. We estimate the pattern error of the EDGAR 3 anthropogenic NOx emission field as ( 27 +/- 5)%, which can be reduced by combining all fields to ( 15 +/- 3)%. By determining outliers, we identify locations with high uncertainty that need further examination.
000049906 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000049906 588__ $$aDataset connected to Web of Science
000049906 650_7 $$2WoSType$$aJ
000049906 7001_ $$0P:(DE-Juel1)3709$$aStein, O.$$b1$$uFZJ
000049906 7001_ $$0P:(DE-Juel1)16347$$aRohrer, F.$$b2$$uFZJ
000049906 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b3$$uFZJ
000049906 7001_ $$0P:(DE-HGF)0$$aRichter, A.$$b4
000049906 7001_ $$0P:(DE-HGF)0$$aBurrows, J. P.$$b5
000049906 7001_ $$0P:(DE-HGF)0$$aBeirle, S.$$b6
000049906 7001_ $$0P:(DE-HGF)0$$aWagner, T.$$b7
000049906 7001_ $$0P:(DE-HGF)0$$aPlatt, U.$$b8
000049906 7001_ $$0P:(DE-HGF)0$$aElvidge, J. M.$$b9
000049906 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2005JD006068$$gVol. 111, p. D05312$$pD05312$$q111<D05312$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v111$$x0148-0227$$y2006
000049906 8567_ $$uhttp://dx.doi.org/10.1029/2005JD006068
000049906 8564_ $$uhttps://juser.fz-juelich.de/record/49906/files/2005JD006068.pdf$$yOpenAccess
000049906 8564_ $$uhttps://juser.fz-juelich.de/record/49906/files/2005JD006068.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000049906 909CO $$ooai:juser.fz-juelich.de:49906$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000049906 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000049906 9141_ $$y2006
000049906 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000049906 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000049906 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000049906 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000049906 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000049906 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000049906 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000049906 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x0
000049906 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000049906 970__ $$aVDB:(DE-Juel1)78047
000049906 9801_ $$aFullTexts
000049906 980__ $$aVDB
000049906 980__ $$aConvertedRecord
000049906 980__ $$ajournal
000049906 980__ $$aI:(DE-Juel1)IEK-8-20101013
000049906 980__ $$aI:(DE-82)080011_20140620
000049906 980__ $$aUNRESTRICTED
000049906 981__ $$aI:(DE-Juel1)ICE-3-20101013
000049906 981__ $$aI:(DE-Juel1)IEK-8-20101013
000049906 981__ $$aI:(DE-Juel1)VDB1047