001     49906
005     20240712101009.0
024 7 _ |a 10.1029/2005JD006068
|2 DOI
024 7 _ |a WOS:000236270600001
|2 WOS
024 7 _ |a 0141-8637
|2 ISSN
024 7 _ |a 2128/20478
|2 Handle
037 _ _ |a PreJuSER-49906
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Toenges-Schuller, N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB44076
245 _ _ |a Global distribution pattern of anthropogenic nitrogen oxide emissions: Correlation analysis of satellite measurements and model calculations
260 _ _ |c 2006
|a Washington, DC
|b Union
300 _ _ |a D05312
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Geophysical Research D: Atmospheres
|x 0148-0227
|0 6393
|v 111
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a [1] Nitrogen oxides play a key role in tropospheric chemistry; to study the distribution patterns of the corresponding anthropogenic emissions ( fossil, industrial, waste), we use three independent data sources: GOME measurements of the tropospheric NO2 column density fields, the EDGAR 3 emission inventory as an estimation of the anthropogenic NOx emissions and nighttime images of worldwide human settlements seen by the DMSP OLS satellite instrument as a proxy for these emission patterns. The uncertainties are not known precisely for any of the fields. Using the MOZART-2 CTM, tropospheric column density fields are calculated from the emission estimates, and transformations are developed to turn the GOME columns into anthropogenic emission fields. Assuming the errors of the three data sources ( GOME, EDGAR, lights) to be independent, we are able to determine ranges for the pattern errors of the column density fields and values for the pattern errors of the source fields by a correlation analysis that connects relative error (co) variances and correlation coefficients. That method was developed for this investigation but can generally be used to calculate relative error variances of data sets, if the errors of at least three of them can be assumed to be independent. We estimate the pattern error of the EDGAR 3 anthropogenic NOx emission field as ( 27 +/- 5)%, which can be reduced by combining all fields to ( 15 +/- 3)%. By determining outliers, we identify locations with high uncertainty that need further examination.
536 _ _ |a Atmosphäre und Klima
|c P22
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK406
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Stein, O.
|b 1
|u FZJ
|0 P:(DE-Juel1)3709
700 1 _ |a Rohrer, F.
|b 2
|u FZJ
|0 P:(DE-Juel1)16347
700 1 _ |a Wahner, A.
|b 3
|u FZJ
|0 P:(DE-Juel1)16324
700 1 _ |a Richter, A.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Burrows, J. P.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Beirle, S.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Wagner, T.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Platt, U.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Elvidge, J. M.
|b 9
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)2016800-7
|a 10.1029/2005JD006068
|g Vol. 111, p. D05312
|p D05312
|q 111|t Journal of Geophysical Research
|v 111
|x 0148-0227
|y 2006
|t Journal of geophysical research / Atmospheres
856 7 _ |u http://dx.doi.org/10.1029/2005JD006068
856 4 _ |u https://juser.fz-juelich.de/record/49906/files/2005JD006068.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/49906/files/2005JD006068.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:49906
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P22
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Umwelt
|z fortgesetzt als P23
|0 G:(DE-Juel1)FUEK406
|x 0
914 1 _ |y 2006
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |d 31.12.2006
|g ICG
|k ICG-II
|l Troposphäre
|0 I:(DE-Juel1)VDB48
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)78047
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21