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The Korringa-Kohn-Rostoker (KKR) method for the calcwatiof the electronic structure of
materials is founded on the concepts of the Green functiohoAmultiple-scattering. In this
manuscript, after a short introduction to Green functioms, present a description of single-
site scattering (including anisotropic potentials) andtiple-scattering theory and the KKR
equations. The KKR representation of the Green functionth@@lgebraic Dyson equation are
introduced. We then discuss the screened KKR formalismjtaradivantages in the numerical
effort for the calculation of layered systems. Finally weega summary of the self-consistency
algorithm for the calculation of the electronic structure.

1 Introduction and Historical Survey

The multiple-scattering method of Korringa, Kohn and Rkstofor the calculation of
the electronic structure of materials was introduced in718¢ Korringa and in 1954 by
Kohn and Rostoket.Characteristic of this method is the usenuiltiple-scattering theory
for the solution of the Schrodinger equation and the detsation of the electron band
structure. In such an approach, the scattering propertieaah scattering center (atom)
are determined in a first step and described by a scatteritigxinahile the multiple-
scattering by all atoms in the lattice is determined in a sd&iep by demanding that the
incident wave at each center is the sum of the outgoing wawees &ll other centers. In
this way, a separation between the potential and geometegties is achieved.

A further significant development of the KKR scheme came whesas reformulated
as a Green function methdd. Once more separating the single-site scattering problem
from the multiple-scattering effects, the method is ablprtmduce the crystal Green func-
tion efficiently by relating it to the Green function of frepace via the Dyson equation.
In a second step the crystal Green function can be used asrameé in order to calculate
the Green function of an impurity in the crysfahgain via a Dyson equation. This way
of solving the impurity problem is extremely efficient, agivig the construction of huge
supercells which are needed in wavefunction methods.

Chemically disordered alloys can also be treated by the Kithod within the coher-
ent potential approximation (CPA)In this approximation one defines the Green function
of an average crystal medium, determined self-consistémtbugh the condition that the
concentration average of the various atom types shouldnooiuge any scattering in this
medium.



The development ofcreenedor tight-binding KKR was a further breakthrough for
the numerical efficiency of the methddVia a transformation of the reference system
remote lattice sites are decoupled, and the principal lesgmique allows the calculation
time to scale linearly with the number of atoms. This is esibcuseful for layered
systems (surfaces, interfaces, multilayers) and alloesstiindy of, e.g., interlayer exchange
coupling or ballistic transport through junctions.

Transport properties have also been addressed within thei&thod, since the com-
putation Green function allows for approaches of the Kulvee@wood type (for diffusive
transporty or the Landauer-Biittiker-type (for ballistic transpdft) Combined with the
Boltzmann equatidhthe method for solving the impurity problem is also idealijted for
the calculation of transport properties in dilute metadlioys.

In recent years, an attempt fab initio calculations beyond density functional the-
ory (DFT) has led to the development of hybrid theories whiombine the local den-
sity approximation (LDA) to DFT with dynamical mean-fieldettry (DMFT). In these
“LDA+DMFT” schemes the Green function is a central quantiiynce the electron self-
energy is evaluated diagrammatically and included in tlap@gators through a Dyson
equation. Therefore the KKR Green function formalism islwgeited for further devel-
opment in this direction, and steps have already been takigrclude DMFT in the KKR
schemé!

A short list of successful applications of the KKR method étectronic structure of
solids, combined with density functional theory, includiesk materials?, surface®’, in-
terfaces and tunnel junctiolfs and impurities in bulk and on surfacEs.Spectroscopic
properties® and transport properti€s'® have also been studied within this method. The
KKR scheme can incorporate the Dirac equation, whenevativedtic effects become im-
portant?®

Since the KKR method is concerned with the propagation ofesathrough an ar-
ray of scatterers, its applications are not restricted ¢ofigd of the electronic structure
of solids. The propagation of, e.g., electromagnetic wawgshotonic crystalg! or the
propagation of elastic waves through photonic crydtatan be efficiently described by
multiple-scattering theory, and the useful features of KKi&ch as the CPA, can be also
generalized for these cas®s.

In this manuscript we present the basics of the KKR formaliafiter a general intro-
duction to Green functions in Section 2, we give an analykib® single-site scattering
problem in Section 3. We continue with a detailed presemtaif multiple-scattering the-
ory (Section 4), where the basic ideas are given indepelyadrat Green function formula-
tion; we then attend to the KKR representation of the Greatfan in Section 5. Details
on the single-site scattering problem by non-sphericadptidls are given in Section 6,
while the method for total energy calculations is summarizeSection 7. We carry on
with the basics of screened KKR in Section 8, and briefly show to calculate surfaces
or interfaces in Section 9. Finally, we discuss the selfstsiency procedure, including
the idea of complex-energy contour integration, in Secfidn The reader is assumed to
know the basics of DFT, of the LDA, and of electronic struetoalculations. These are not
essential for the multiple-scattering formalism, but bmedmportant in Sections 7 and 10.
The solution of the impurity problem within the KKR Green fition method is described
in the manuscript of Peter H. Dederichs (see page 279).



2 Definition and General Properties of the Green Function

In this section we give a brief introduction to Green funotan scattering problems. The
purpose of the introduction is to remind of the concepts amchéilas which will be used

in the subsequent sections. For more details, includingpemaatical rigor, we refer to the
literature, e.g., to the book by Newttror by Economoif?

2.1 Time-Dependent Green Functions

Consider an electron under the influence of a potet{@). The Hamiltonian is
H = -V’ + V() = Hpree + V(7). (1)
Here, and in the following, we use atomic units£ 1, me = %, e = —/2). The time-

2 ’
dependent Schrodinger equation, determining the timkigoa of the electron wavefunc-

tion ¢(t), is

.0
i3 (t) = H(t) (2)
with formal solution
P(t) = e Hy(0), 3)

and withy(0) representing the wavepacket preparation as an initialitondThe quantity
U(t) = e~*Ht js the time evolution operator in quantum mechanics.

Corresponding to the Schrodinger equation, we define navprmepagators, thee-
tarded Green functio?®(¢) and theadvanced Green functia@“ (), as

.0
(’& - H) GBA(t) = 6(¢) (4)
with boundary conditions
GRt)=0 t<0 (5)
GAt)=0 t>0. (6)
The formal solution of these equations is
s ,—i1Ht
R/ _ | —le t>0
Gr) = {0 t<0 @
A _ 0 t>0
G (t) - {ie_th t< O (8)

Evidently, the Green functions coincide, up to a factorhwite time evolution operator;
G*(t) is used to propagate the wavefunction forward in time, @dt) to propagate the
wavefunction backward in time:
P(t) = iGRE—-t)t) <t 9)
P(t) =—iGA(t —t)y(t) t<t. (10)
In the following we shall restrict the discussion to the rééa Green functio?® and
drop the indexR.



Given a perturbing potentid V' (7) added to a HamiltoniaHy, it follows from Eq. (5)
that the Green functios; corresponding to the new Hamiltonidiy, = Hy + AV is
related to the Green functidiy corresponding td, via the Dyson integral equation

t
Gr(t) = Go(t) + /0 Golt — ') AV Gy () dt'. (11)

Furthermore, it can be proven that an incoming wavepagketvhich without the interac-
tion with AV would evolve asg)y(t), evolves into the wavefunctiap(t) as

t
B(t) = o(t) + / Golt — ') AV (t') d'; (12)

this is theLippmann-Schwinger equation

2.2 Energy-Dependent Green Functions

A Fourier transform of the Green function,
G(E) = / G(t) el E+iot gy (13)

results in the formal solution
G(E)=(E +ie - H)™. (14)

Here,e is a positive real number, to be taken in the end to the kmit 0, which ensures
convergence of the integral in Eq. (13) for» co. More generally, one may define the
(time-independent) Green function as the resolvent ofithe-independent Schrodinger
equation, via the operator equation

GE)=(E-H)™ (15)

for an arbitrary complex energy (as long agE — H) can be inverted). The singularities
of G(E) determine the eigenvalue spectrum; in particl ) has poles at the eigenen-
ergies of the bound states, and a branch cut along the eseffgiee continuous spectrum.
ForImE > 0, G(E) is an analytical function of. In terms of a complete set of eigen-
functions ofH, |¢;), corresponding to eigenvalues the following spectral representation
can be obtained:

e i) (il
G(E) = Z E—c (16)
Represented in real space, the above equation becomes
Ly N W) 97 ()
G(r, 7' E) = Z T E-¢ 17)

representing, in the limit dfmE = ¢ — 0T, an outgoing wave at with a source term at
7'. From the above equation one can see that the imaginaryfp@risodirectly related to
the spectrally- and space-resolved density of sta{@sE) (for real E):

n(f E) = —%ImG(F,F’;E). (18)



This follows from the Dirac identity,

/Oo &dm _p (/OO Mdm) Finf(zo) (19)

Oo.iL‘—.CL‘o:l:’iE —o0o L — Zo

whereP stands for the Cauchy principal part of the integral. Onedsstuce from Eq. (18)
an expression for the spectral density of states,

n(E) = —%Im / G(F, 7 B) &r = —%ImTrG(E), (20)

where the last step stresses that the trace of the op&éfoy can be taken in any basis,
not just in real-space representation. On the other hard;hthrge density is found as an
integral ofn(7; E) over the energies up to the Fermi letel:

1 Er 1 Br

p(F) = —=Im G(F,7 E)dE = ——Im/ Tr (FG(E)) dE (21)

T —o 0 o

with # = |7 (7 — 7'){F'| is the position operator.
In general, from the spectral representation (Eg. (16)lloivs that the expectation

value of any physical quantity, represented by an operdtotan be harvested via the
relation

(4) = —%Im /_ Y [A G(E)] dE. (22)

Therefore, the Green function contains all informationathis given by the eigenfunc-
tions. If the Green function can be computed, then all plajgicoperties of the system
can be found.

2.3 Relation between Perturbed and Unperturbed System. Th#&-Matrix

The time-dependent Dyson equation (11) has its energyrdigpé counterpart. Given
from Eq. (15) that for the reference syst&ij' (E) = E — H,, while for the perturbed
systemGT!(E) = E — (H, + AV), we conclude that the two Green functions are con-
nected via

GT'(E) = Gy (E) — AV. (23)

The Dyson equation can be rewritten in the following form&igh can be directly verified
by substitution in Eq. (23)):

G1(E) = [1 - Go(E) AV] ™' Go(E) (24)
= Go(E)[1 - AV Go(E)] ™" (25)
= Go(E) + Go(E) AV G (E). (26)

The last expression, although not in a closed form, remifigxpression in Eq. (11) and
allows for an interpretation of the Dyson equation via npldtiscattering events by the
perturbing potentiaA V' if we expandZ; in the right-hand side:

2This is of course valid for fermions @ = 0; otherwise a convolution with the Fermi function, or the aypiate
distribution function, is needed.



this is the analogue of a Born series expansion for the Grawetibn.
Also the Lippmann-Schwinger equation (12) has a time-iedejent counterpart. Ob-
serving that the Schrodinger equation for the perturbstesy can be written as

(B — H) |¢1) = AV [¢), (28)

we can verify by substitution that the soluti@gy ) can be written in terms of the unper-
turbed eigenstatdgy) as

1) = o) + Go(E) AV [¢1). (29)

Expanding;) on the right-hand side of this Lippmann-Schwinger equaliéals to the
Born series

[¢1) = |v0) + Go(E) AV [tho) + Go(E) AV Go(E) AV |tho) + --- . (30)

In the case thaF does not belong to the spectrum of the unperturbed HangltoHi,
|the) = 0 and we have

l1h1) = Go(E) AV |¢h1). (31)

This expression can be used to obtain the discrete specftritin.o

We now introduce the transition matrix, @-matrix, of a scattering system. It relates
the stategi1) of the perturbed Hamiltonian to the stales) of the unperturbed system
via the defining equation

AV[¢p1) = T(E)|tbo)- (32)
In terms of thel'-matrix the Lippmann-Schwinger equation (29) is written as
Y1) = [1bo) + Go(E) T(E) [tho), (33)
the Dyson equation (26) as
G1(E) = Go(E) + Go(E) T (E) Go(E), (34)
while the following relations can be easily verified:
T(E) = AV [1 - Go(E)AV] " (35)
=[1-AVGy(E)] ' AV (36)
= AV + AV Go(E) T(E). (37)

Expanding the right-hand side of the last equation leads amare to a Born series:
T(E) = AV + AV Go(E) AV + AV Go(E) AV Go(E) AV + -+, (38)

while for small perturbations we are led to the first-ordermBapproximation]’ ~ AV'.

Via the T-matrix one can express the change in the integrated deofigtates,
AN(E), between the perturbed and the unperturbed system. FronR&pit follows
that the change in the density of states is

An(E) =n1(E) —no(E) = —%ImTr [G1(E) — Go(E)] . (39)



Eqg. (15) gives us, on the other hand, the idenfity= d(In G~!)/0E. Combining this
with (39) we proceed as

1 0 _ _ 1 0 _
An(E) = _;ImTra_E [ln Gi' - InG, 1] = —;ImTra—E In [GO G, 1] (40)
1 0
= ——TIm = Trin[1 - Go AV] (41)
1 0 1

In the last two steps we used the Dyson equation (24) and tyepy (Eqg. (35)) of the
T-matrix. The integrated change in the density of statesus th

AN(E) = / ’ An(E')dE' = —%ImTrln [T-Y(E)AV]”_ . (43)

By splitting the logarithm atn (71 (E) AV) = InT~}(E) + In AV we see that the con-
tribution of AV drops out. Since the lower integration limit{co) is below the spectrum
of the Hamiltonian, it also gives no contribution. We aregleft with the result

AN(E) = %ImTr InT(E). (44)

In the following section we will associate the perturbatidi with a spherically sym-
metric potential of finite range in free space. Then we havegiessite scattering problem,
and we will denote th@'-matrix ast; in angular-momentum representation it is diagonal
and its elements are related to the scattering phase 8f{i3 via

1 .
t = ———sin(6,(E))ei®®).

vE
In this special case, Eq. (44) becomes

AN(E) = 1 > @1+ 1)6(E). (46)
T
If the scattering potential represents an impurity in a-efsetron host, then the integrated
difference of density of states up to the Fermi levely (Er), must be equal to the addi-
tional charge introduced by the impurit¥imp, — Zinost. This is expressed by tHeiedel
sum rule Including a factor 2 for the spin degeneracy, the rule reads

2
Zimp ~ Zhost = — > @1+ 1)5(Er). (47)
I

3 Single-Site Scattering

We turn now to the scattering problem of a spherical atomiemqital embedded in free
space (actually in an environment of constant potentialje fieference system is thus a
free-electron system (where the Hamiltonian contains timdykinetic energy term, and

bThis is becaus@& V' does not depend on the energy; in systems where the peiturismenergy-dependent, e.g.,
a self-energy, it must be accounted for.



the eigenfunctions are plain waves). The Green functionfedexelectron system has the
form24* 25
1 eiklf"—i"'\

e 48
dr |7 — 7] (48)

g(F, 7' E) =

with & = +E. In the case of scattering by a central potential, it is usefwork in
angular-momentum representation. We therefore reprasentoming plain wave as

() = e = 3 drit jy(VEr) Y (7) Vi (F) (49)
L

wherej; is the spherical Bessel function, whilg, are the real spherical harmonics (see
Appendix 10). We use the combined indEx= (I,m), wherel andm are angular mo-
mentum indexes. On the other hand, the free-space Greetidi(48) can be expanded
as:

977 B) = > Yi(7) gi(r,r'; B) Yo (F') (50)
L

with

gu(r,v'; E) = =VE ji(VEr<) i(VErs), (51)
whereh; = j; + in; are spherical Hankel functions; are spherical Neumann functioffs,
while r. (rs) is the smaller (bigger) of the radiiandr’. The Bessel functionf (x) are

finite asz — 0, while h;(z) andn;(x) are diverging ag — 0.
Suppose now that there is a scattering potential of finitgeaaof the form

_[V(r)r<s
ve={" 138 =)
Then the radial wavefunctiorf®; (r; E) satisfy the radial Schrodinger equation
102 I(1+1)

The asymptotic form oR;(r; E) for r — oo is

Ri(r; E) — \/AEIT sin (\/Er - lg + 5,(E)) (54)

where4; is independent of andd; (E) is the phase shift with respect to the wavefunction
for vanishing potential.

Forr > S, V(r) = 0 and the general solution of the radial equation is a sum of two
linearly independent special solutions:

Ry(r; E) = B, jy(VEr) + Cymy(VEr) (55)

whereB; andCj are constants. Using the asymptotic form of Bessel funstion

wlLrI;ojl(x) = isin(af —Im/2) (56)
lim () = —i cos(z — I /2) (57)



together with Egs. (54) and (55), we obtain
Ri(r; E) = 4 (jl(\/Er) cos & — ny(VEr) sin (51) forr > S. (58)
On the other hand, the Lippmann-Schwinger equation gives
s
Ri(r; E) = ji(VEr) +/ a(r,7; E)V (') Ri(+'; E) r' dr' (59)
0
which, using Eq. (51), yields far > S:
s
Ri(r; E) = ji(VEr) — ihl(\/Er)\/E/ G (VEM V()Y R(r;E)r' dr'.  (60)
0
The integral is just thet-matrix element in angular-momentum representation (see
Eq. (32)),
s
t1(E) = / J(VEr)V(r) Ri(r; E) rdr, (61)
0
so that we obtain
Ri(r; E) = i(VEr) —iVEt(E) y(VEr) (r> 8) (62)
with thet-matrix related to the phase shift by (cf. (58))
t(E) = —% sin &;(E) e(B), (63)

An incoming wave can be expanded in Bessel functions andrisghéarmonics as
(cf. (49))

VP = ZaM¢7wwvmw>& (64)

The scattered wave can be expanded analogously as:

GRS Za G(VEr)YL(7) (forr > S). (65)

Within the rangeS of the potentlal we have
Vp(7) = agy, Rulr; B) Yi.(7) (66)
L

with the boundary conditions @t; given by (62). From the continuity of the wavefunction
atr = S, we obtain then

a¥, = —iVEt(E)al, . (67)

Finally, we give without proof the Green function for the tedng problem by a cen-
tral potential. It can be written as the product of two lifgandependent solutiond;
(regular, i.e., converging at— 0) andH; (irregular, i.e., diverging at — 0), of the radial
equation:

G, 7" E) = —iVE Y Ri(r<; E)YHi(r>; E) Yr.(7) Yi.(7") (68)
L

= Z Gl(T‘, TI;E) YL(T-'&) YL(FI).

L



The boundary conditions d®; are given by Eq. (62). In order to find the boundary condi-
tions of H; we use the identity (34); = g; + g t; g1 With g; given by (51) and obtain

H(r;E) = h(VEr) (r > S). (69)

In practice, we integrate Eg. (53) numerically outwardsrfrihe origin tor = S in order
to obtainR;. At r = S the requirement for continuity of the logarithmic derivatiyields
the¢-matrix elements. Analogously, a numerical integrationards yields the diverging
radial wavefunctiorf{;, given the boundary condition (69)at= S.

4 Multiple-Scattering Theory

In the previous section we discussed the solution of theesaag problem for an isolated
scattering potential. In this section we will extend thedgtto a set of scatterers. At this
point we assume theauffin-tin(MT) approximation to the scattering potential, according
to which the potential is spherically symmetric around esgdttering center (atomic site),
within a sphere of radiu®y T, and constant otherwise; the spheres can be touching each
other, but are assumed to be non-overlapgifdne theory presented here is based on the
bookkeeping of the scattering amplitudes in a periodicyanfacatterers, so that a secular
equation connecting the amplitudes of incoming and outgaiaves emerges. The proce-
dure leads to the KKR equations for the band structure obparicrystals. Although the
procedure is not necessary for the KKR Green function théigpyovides physical insight

to the ideas founding multiple-scattering theory, used anynwave-scattering problems
even when a Green function is not introduced. The connettitime KKR representation

of the Green function will be done in the next section.

Assume a periodic structure of MT potentials, centeredttéssites™. The constant
potential in the interstitial can be taken to be zero. An oirtg wave from sitef" can be
expanded in incoming waves at sie’ by employing a theorem for the transformation of
Hankel functions:

- 7 g ? !
hu(F'+ B = B E) = == g (B) jur (75 B), (70)
VE <

where we have used the abbreviations
jt(@B) = i(VEr) Yr(7) and hi(F';E) = h(VEr)Yr(®.  (71)
The expansion coefficients, also calldicture constantare given by

GPTHE) = —(1 = 8pp) 4miVE Y i =" Cppipn hpn (B" — RY5E) - (72)
LII

where the Gaunt coefficients

Crpor = /dQ Y. (r) Yo (7) Yo (7) (73)

¢In Section 6 we will see how the method can be extended to thergkcase of non-spherical site-centered
potentials (the so-calleftlll-potential problem).

10



have been introduced. The summation in Eq. (73) includesta fimmber of terms, since
the Gaunt coefficients vanish fit > I’ + [. Using the above expansions, the free-electron
Green function can be cast in the form:
. L, 1 eiklmHR -7 — R
g(F+R", 7'+ R";E) = —— — ~—
4T |7+ R — 7' — R
=—iVE ZJL P E)hio (75 E) + ) jo(7 E) 8% (B) ju (7P E) . (74)
LL’

We proceed by considering anitgoingwave in the interstitial, after a scattering event

by a potential aiz™. It has the form

sc (n) ,r-.o) stc (n) h ) (75)

The same wave can be resolved asrmomingwave at a different centdt™ via
2@ = 38 L E). (76)
L
Thus a wave scattered at sitecan be expressed as incoming to site
S hy (¢ B~ B E) = 30 (s ). (77)
L L
Using the identity in Eq. (70) we find
(n") _ sc(n')
b = Z grm, bkL, . (78)

Given the periodicity of the crystal lattice, we employ thie@& condition according
to which the amplitude of a scattered wave at posiﬁ_ijhdiffers from the amplitude of a
scattered wave at positidi* by a phase factor afxp(ik - (E" — B )). The amplitude of
thetotal incoming wavet the scattereR™, originating from all other identical scatterers,
can therefore be written as

i) = 752 S ) Gl = S g B G )
L' n#n'!

The quantitieg andc*° are the expansion coefficients for the total incoming anttesed
wave, respectively, while

grr (ks E) Z gy (E ZE'(RH_Rn ) (80)
n#n'

is the Fourier transform of?%,(E). The KKR structure constantg; . (k; E) (and

gLL,( )) depend only on the geometry of the lattice and not on theesoag potential!
The total scattered wave from a scatterer at lattice ssitess connected to the total

incoming wave at that site via thematrix, with elements;(E). In the presence of an

dNote that the calculation o_njLL/(E; E) demands a cumbersome Ewald summation, because the real-spa

g%’i’, (E) does not fall off fast enough in real space. Alternativelye ean use the tight-binding KKR formalism,
presented in Section 8.

11



external incoming wave (from outside the crystal) of annmliia%L, the total incoming
wave at some site consists of the external one plus the waatered from all other
lattice sites, so that:

&) = —iVEn(E) ( +e ’) . (81)
Combining Egs. (81) and (79), we arrive at the following sysof equations:
az, = Z (5LL' — g (K E) ty (E)) ﬁ ti ' (E) CSECL(7I)- (82)
T
In the absence of an external incoming wave, these are tewsds
> (0w — 9o (R BY t(B)) ) = 0. (83)
T

The electronic eigenvalues in a crystal are given by thetisoisi of (83), i.e., in the absence
of an external wave. In order to have non-trivial solutiohsystem (83), the necessary
and sufficient condition is that the determinant vanishes:

Det [6LL’ — gLL/(I;; E) ty (E)] =0. (84)

This is the KKR secular equation, giving the energy band:ameE(E) of periodic crys-
tals.

The total wavefunction in the interstitial around a scaiteris given by the sum of the
incoming and scattered waves, Eqgs. (75) and (76). Using E&fk) and (83) we arrive at
the form

7‘+R” Zc(n) [jL 7 E) —iVEhy (7 E)| > Rur. (85)
Each componertt of the wavefunction has thus the form®f (7; E) = R;(r; E)Y7 () of

Eq. (62) forr > S. We are led therefore to the following form of the Bloch wauggtion
in the crystal:

(7 + R") Z C(") (86)
Bloch'’s theorem implies
(n) _ ik-R™ (0)
co =€ Crpe (87)

The coeﬁicient&%’? can be viewed as the matrix elements of a unitary transfeomat
between thé: and(L, n) representations. The orthogonality of the bases implies:

Zc(n)* & = o (88)
ZC(TL)* &, — (Snn’(SLL’ (89)

12



5 KKR Representation of the Green Function

We now turn to the description of the KKR Green function methioy introducing the
KKR representation of the Green function and the Dyson eguiat

Consider the Green function of a periodic array of sphdgicaymmetric, non-
overlapping potentials. The potential is given by

V(7 + R") =V"(r) (90)
and the Green function is defined via
(-V2+V™(r) — E) G(F+ B", 7' + R, E) = =0, d(F = 7') . (91)

Forn # n' the Green function satisfies the homogeneous Schrodiggatien and can be
expanded in the regular solutions of the Schrodinger éou&? (7 E) and R} (7; E). In
the muffin-tin approximation (see equation (52)), thesesamly given byR%} (7} E) =
R} (r; E)Y1 () (see equation (53)), while in the full-potential case a nmrmbersome
calculation is needed (see Section 6). ko= n' we actually have the Green function
for a central potential as in Eq. (68), but with a boundaryditton of back-scattering by
all other potentials in the crystal. In the end, the Greertfion is a sum of the general
solution of the homogeneous equation corresponding to®q, plus a special solution
of the inhomogeneous equation (91). In the mixed site-aargubmentum representation,
the Green function is finally expanded as:

G(7+ R", *’+}?"" )—
—szR” Fe; E) HY (7 E) bu + Y Rp (7 E) G7%(E) Ry (7'; E), (92)
LL'

where we have used the abbreviatiii (7; E) = H}*(r; E)Yy () for the irregular so-
lution of the radial equation at the atomic cell The coefficientsG}"%, (E) are called
structural Green functionsand are at the moment unknown quantities to be calculated by
use of the Dyson equation. This, taking free space as thetumped system, is:

G+ R 7' + BV, E) = g(F + B*,7' + B E) +
/d37'"g T‘—I—Rn —a//_'_Rn . )Vn”(T‘”) G(F’I+EHII,FI+ERI;E) . (93)

By substituting the expansions Eqgs. (74) and (92) into E8),(@ne can arrive, after some
algebra’ at the followingalgebraic Dyson equatiodetermining the structural Green func-
tions:

T (E) = g7 (B Z 9vin (E) 7, (E) G1.7 (E) (94)
/l Ll’

where thet-matrix enters, instead of the potential which appears enrtrmal Dyson
equation. The physical significance of this equation becoctearer if we expand the sum
on the right-hand side, whence we obtain:

n'p!t L p "1

n
GLL’ = gLLI + E gLL” tl” gL”L’ + g E gLLII tl” gL//Ll/l tlm gglil%l + -,
ll L/l II Ll/ 17 Ll/l
(95)
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meaning that an the electron can travel frafiio n. directly, or after being scattered once
by any site, or by two sites, etc.

In practice, the structural Green functions are first calmd inl_é—space using matrix
inversion; a subsequent Fourier transform gives us thespade quantities. We write,
then,

Gru (R B) = 3 Giy (B) e F R R (96)
(which, due to translational symmetry, is independent)ofT he algebraic Dyson equation
(94) becomes

Gr (K B) = gru (,E) + 3_ guuw (B B) tor(E) Gy (B E) — (97)
Lll
(the t-matrix is independent of, again due to translational symmetry). The structural
Green function€7;;» andgyrr/, and thet-matrix ¢;, are considered as matriceslinand
L', and (97) is solved by matrix inversion after a cutoff at sdme I,,,x for which the
t-matrix becomes negligible (usually,.x = 3 or 4 suffices). The resultis

- = o1 —1
BB = [ ke (g Em)E) B (@9
BZ JBZ LL
where the integral is over the Brillouin zone voluiigz. For the calculation of the charge
density or of the density of states, only the on-site term n', G7%., (E), is needed.

It is straightforward to generalize the method to the casmafe than one atoms per
unit cell, sayN,;. Introducing an index = 1,..., N, to account for the different atom
types, and reserving the indexfor the periodic lattice positions, an atomic position in
the crystal is defined by the lattice vectBr plus the site vectog* connecting the lattice
point to the basis atom:

R™ = R™ + Y~ (99)

The Fourier transforms are done then with respeetadaly, so that we have an expression
analogousto Eq. (96),

G (ks ) Z Guim (B) emik (BT =R™) (100)
and the analogous Fourier transform for the free-spacetsteiconstantg™*" ', giving

the amplitude of electron propagation from atphat lattice positiom’ to atomy at lattice
positionn. The Dyson equation (98) then takes the form

G (g) = L [ o) i)
BZ JBZ
. -1 !
x[(l—g(k;E)t(E)) g(k;E)] . (101)
LL'

Here, thet-matrix t(E) depends on the atom-typeand on angular-momentum indexes

(it is site-diagonal,(t )”” = t}'6,w). The structure constantg(k; E) are considered

as matrices in botiL, L") and(p u'), and thus the computational effort for the matrix
inversion increases @(N3,). A considerable speed-up can be achieved for large systems
by using the concept of the screening transformation (segoBeB).
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6 Description of the Full-Potential

Although the approximation of spherical potentials arotivelatomic gives in many cases
reasonable results, the correct description of the fuB@mdpic potential can give signif-
icant corrections when details of the electronic strucanerequired. The full-potential
can be especially important in systems of reduced symmaig)) as non-cubic crystals,
at surfaces or interfaces, etc.; in particular the calaadf forces on atoms, leading to
lattice relaxations, is highly inaccurate without the fpditential. In this section we give a
summary of the full-potential treatment within the KKR meth and refer to the literature
for details, concerning in particular the convergence privgs?’

We begin our discussion on the level of scattering theory §ingle anisotropic poten-
tial V() of finite maximal radiusS, which later will represent the site-centered atomic po-
tential of a crystal. An incoming wave of waveveciorscattered by this potential, results
in a wavey; (7). The dependence dis lifted by an expansion in spherical harmonics:

Yp(7) =Y Ani' Vi, (F) Ry (7, E), (102)
~

whereR;, (7; E) is the regular (converging at zero) solution of the Schmgdr equation
corresponding to an incoming spherical wave of symmétryThe Lippmann-Schwinger
equation, determining (7; E), is

Rpy(7) = ju (VER) Yo (7) + / o7 BV () Ry (7 &, (103)

where the incoming free wavg (v Er)Yy(7) and the free-electron Green function
- =/,

g(7,7'; E) appear. While the indeX' refers to the incoming wave, the wavefunction
Ry (7") can be expanded once mé&ti spherical harmonics to lift the dependence on the
direction of7 (if the potential is spherically symmetri®y, (7) is just Ry (r) Y7, (F)):

Ry (F) = Z Rpp(r; E) YL (7). (104)
L

Similarly, the potential/ (7) is expanded in spherical harmonics as
V() =Y Vi(r)YL(). (105)
L

Using these expansions, the Lippmann-Schwinger equatia®) can be re-written in the
form

S
RLL' (7‘; E) = jl (\/ ET) (5LL’ + / qi (7‘, TI; E) Z VLLII (TI)RLHLI ('I“I; E) TI2 dTI (106)
0 LII
where we have introduced the notation
VLL' (’r’) = Z CLLILII VL” (’[‘) (107)
LII

The advantage of Eq. (106) is that it contains only a one-dsimmal integral instead of the
three-dimensional integral of (103). However, one has rmaoive a system of coupled
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radial equations, since the Schrodinger equation reads:

162 I(l+1
Z [(———r + ( :; ) _ E) drrr + VLL":| Rprp(r;E)=0. (108)

2
= r or

Obviously, the non-spherical components of the potentiaxl tine angular-momentum
channels, resulting in the above coupled equations. Alse¢-thatrix contains now mixed
angular-momentum components. It is found by matchiagr: to an outgoing free wave
at the boundary, and related to the solutiaRy. ./ by:

s
trr (E) = / jl(v E’f‘) Z VLLHRLHL/ (T’I; E) 7‘12 d’r‘l (109)
0 LII
which is analogous to expression in Eq. (61) for the sphepogential. Similar to
RL(7 E), the irregular (diverging at the origin) solution of the Satlinger equation,
Hp(7; E), is expanded in spherical harmonics as

Hp (M E) = Z Hpp (r; E)Yp (7). (110)
T

Instead of solving directly the coupled Schrodinger et a different procedure
is followed, based on perturbation theory. Since the ndrespal part of the potential
is usually weak compared to the spherical part, first thealasﬁlutionsRlSph(r;E) and
HlSph(r;E) for the spherical componenVjq(r)) are calculated, as in Section 3 (see
Eq. (53)). Thisis used as a reference system. Then, usiagred<orresponding spherical
Green function

G (r,r'; E) = —iVER®" (r <; E)H™"(r >; E) (111)
(see also eq. (68)), the radial wavefunctions of the noresphl case are connected to
Riph(r; E) via the Lippmann-Schwinger equation

s
Rip(r; E) = R (r; E)or1r +/ G (r,r'; E) ZAULL” (r"YRpnp (r'; E)r' dr'

0 L
(112)
where only the non-spherical part of the potential enters:
AULL’ (r) = Z CLLILIIVLII (’r‘) (113)

L"#£0

Eq. (112) can be solved iteratively, as a Born series. Rmedhows that two or three
iterations are enough for most applications. Similar isgbkation for the irregular wave-
functionHy 1. (7 E), starting fromHlSph(r > E).

Within a crystal, the site-centered potentials must be fuatothe boundary of the
Wigner-Seitz cells. In order to ensure this, shape funstiare uset? and expanded in
spherical harmonics. In particular, the shape func@ét#) of a siten is defined as

ny= _ | 1if 7isin the WS-cell of sites,
0"(r) = {0 otherwise (114)
The crystal potential is then given by
V™(F) = V(7 + B") 0" (7). (115)
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The shape functions are expanded as
O"() =) O (YL (). (116)
L

The coefficient®7 (r) enter in the expansions for the charge density and the gaitant
order to ensure the correct cutoff at the Wigner-Seitz baupndVithout going into details,
we note that, although the convergence of Eq. (116) is slog,property of the Gaunt
coefficients

CLLILII 7é 0 Only if |ll — l”l S l S ll + l” (117)

allows us to take into account the shape functions up to 4llyy, if the t-matrix and the
Green functions are cut off &t,...

7 Total Energy

Within density functional theory, the total energy of a maalgctron system is written as a
sum of three terms: the single-particle kinetic enéffy;], the Hartree energi i [p], and
the exchange and correlation enet@y.[ps] (s = (+, —) is the spin index). The kinetic
and the exchange-correlation energy, as well as the totaggrare functionals of the spin
densityps(7) := (p+(¥), p— (7)), while the Hartree energy is a functional of the charge
densityp = py + p—. We have:

Eiotlp+,p-1 = Tlp+, p-1+ Enlp] + Exc[p+, p-] - (118)

Given the single-particle energieg (eigenenergies of the Kohn-Sham equations), the
kinetic energy can be written in terms of these and of thectffe Kohn-Sham potential
Vet (7) as:

8

T[p-l-ap*] = Z (Z €is — /ps(m Vseﬂ‘(f.') d31"> - (119)

In this way, the sum of the single-particle energies
Egp = Zeis (120)
is

is singled out and can be thought of a “band energy”, whichld/be relevant if we had
non-interacting electrons in an external potential, wkiile remaining terms are packed
up together in what is called the “double-counting energyntg, as corrections to the
single-particle picture:

Boclpr.p-1= =Y [ 0@ VNG &1+ Eulpl + Eudlprp 1. (12)

The total energy is the sum of the two:

Etot[p+, p-]1 = Esp[p+,p-] + Epclp+, p-]- (122)
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We proceed to analyze each term separately. The sum of giagliele energies can be
written in terms of the spin-dependent density of statd¥) as

Esp = Z €is
18 EF
=> / En,(E)dE (123)
s -
=EprN-Y_ / Ny(E)dE. (124)

In the last step we introduced; (E) as the integrated density of states up to en&@nd
used the fact that the total number of electrons per spinsisy = fEF n(E)dE, and
N = N4 + N_. In practice, expression in Eq. (123) can be used for perisgstems.
Expression in Eq. (124) is useful for systems with brokenquieity, such as impurities
in crystals, where the perturbed charge density converggssiowly with distance from
the impurity due to Friedel oscillations. ThelN,(E) is calculated not by integration
of ns(E), but by using the Friedel sum rule (or its multiple-scattgranalogue, Lloyd’s
formula), which takes into account the Friedel oscillatiap to infinity.

The double-counting term includes the electrostatic gneagd the exchange-
correlation energy. The electrostatic (Hartree) energyedds on the charge densities at
each celln, p,(7) := p(7 + R™), and on the nuclear charg&&. We have:

EH[p] — Z/" dST - d37‘l (F)p (7‘ )

|F+ Rr — R
_ n' 3
2 ; zm | dr —Rn, ; n;ﬂ an = Rn, (125)

whereQ2™ is the volume of the atomic cell. It proves convenient to define the Coulomb
potential

7

n' (=1 VAL
V() = 2 I i U BEPS < ST A 126
¢ ; o |F+ Rn—7t— Rr'| ;|R”—R”’| (126)

The Madelung potentid’M(Rn) is the Coulomb potential at positiaR™ if we exclude
the termn’ = n from the second sum of (126):

’

Vau(R™) = QZ dr' f’nl ) —— —2 L . (127)
n! |,,‘.‘+ Rn — ! _Rn’l ' (2n) |Rn _Rn’|

Using the above definitions we re-write the electrostatergy as

Enle) = 5 [Z [ #rroven - S zv@) . e
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The Coulomb potential and the charge density atséee expanded in spherical harmonics
aroundR™:

VE(F) =D VL)Y (); (129)
L

P =D pL(r)YL(P). (130)
L

In this way the calculation of the Coulomb potential is regllito summing up terms con-
taining the momentg} (r) of the charge density over all lattice sites. For the higher
terms the corresponding summations converge rapidly, duofv [ an Ewald summa-
tion is required. The details of this procedure are omittecth Once the expansion in
Eq. (129) of the Coulomb potential is known, the Madelungeptill can be calculated
using the value oV 2 at a sphere of radiug around®" and by knowledge of the charge
distribution within this sphere. The result can be obtaibgdolving the corresponding
boundary-value problem in electrostatics (the proof isttedihere):
2 n n 1 n
R(Z N"™(R)) + \/EVC,I:O(R)a (131)
whereN™(R) is the number of electrons within the sphere of radius

The effective Kohn-Sham potential at cellcan be written in terms of the Coulomb
potential and the exchange-correlation energy:

R
Var(B") = 2V/in / P o(r) dr +
0

) = V@) + et (132)

Finally, the exchange-correlation energy within the lodahsity approximation is
given by

B ) = [ o) eaclpr (), p- () (133)

wheree,.(p+, p—) is the exchange-correlation energy density for a homogeelectron
gas of spin density,. This is again expanded in spherical harmonics as

€xc(PL(P), P2(7) = D €fe (M) YL (M), (134)
L

and the exchange-correlation energy is given by

RZ
ELDA[p] = Z Z CLL/LH/O O%(r) pf: (r) €5e 1 (1) r? dr. (135)

n LL'L"

8 Screened (Tight-Binding) KKR Method

An improvement of the KKR method has been achieved by theafleetscreenedr tight-

binding KKR formalism& which allows a considerable reduction of the calculatiometi
for large systems. In particular, while the traditional KK&malism requires a matrix
inversion for the solution of the algebraic Dyson equatiagthwomputational effort of
O(N3) (for N different atoms in the unit cell), in the screened KKR mettioel same
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results can be obtained with an effort of, ideally{V); this is optimally achieved for
layered systems. This is made possible by a transformafitreaeference system after
which the reference Green function falls off exponentialigh distance, thus allowing
the inversion of sparse, or even tridiagonal, matricesciwlis much faster than a full
matrix inversion. Due to the decoupling between distantnédcsites which follows, the
corresponding transformation is calledreening transformatioand the methodcreened
KKR; due to its formal resemblance to tight-binding theory,tfethod is also calletight-
binding KKR

Three observations lead to the tight-binding KKR formalism

e Using the Dyson equation one can connect the crystal Gremtidun to any reference
system (of the same periodic structure), and not just tordeedlectron system.

e A reference system of repulsive potentials can be constiuct which there are no
states in the energy region of interest (up to 1-2 Ry highen f-).

e The structural Green functions of this reference systehofidxponentially in space,
so that the corresponding KKR matrix becomes practicaldyspor tridiagonal.

In what follows, we shall describe these ideas in more detail

8.1 Transformation to an Arbitrary Reference System

In the Dyson equation, introduced in Section 2, no formatestent is made about the
nature of the reference system. Subsequently, when deggtiie KKR method, we have
chosen a reference system of constant potential as the matsahone, since the Green
function and structure constants are then given by simpdé/tcal expressions. Here we
show that a choice of another reference system of the satilatructure as the real
system leads to the same form of the algebraic Dyson equatitimthe difference ot-
matrices between the real and reference systg¢m (E) — t77. (E)) entering in the place
of thet?,,(E) in Eq. (94).

Consider then a reference system of potenfi&ll€'(7) (to be given in detail below)
placed at the lattice sites of the crystal. These are characterizedthpatricest™” (E).
The structural Green function of this systeﬂi‘g’g?' (E), are related to the free-space struc-
ture constants;;gg’, (E) (Eq. (72)), via the algebraic Dyson equation. Adopting fmdte
symbols to denote matrices (and with standing for the site-diagon&lmatrix), this is
written

G"(E) = g(E) + g(E)t"(E) G"(E) (136)
which is rewritten as
(G t=g™' —t". (137)

At the same time the structural Green functions of the resiesy,G7%, (E), are related
to the free-space structure constants viattheatrix t” (E) of the real system. The corre-
sponding algebraic Dyson equation reads:

(G) =g '-t (138)
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Expressions in Egs. (136) and (137) lead directly to thelakje Dyson equation connect-
ing the new reference system to the real system:

(G)™' = (G = (t—t), (139)
which can be expanded as
G(E)=G"(E) + G"(E) At(E) G(E) (140)

with At(E) = t(E) — t"(E). This equation has the same form as Eq. (94) Wt{E) in
the place ot (E).

8.2 Choice of a Reference System of Repulsive Potentials

Having shown that the algebraic Dyson equation holds aftearssformation to a new
reference system, we proceed with the choice of an adegef@eence system in which
the structural Green functions fall exponentially withtdisce. Such a system is defined
by a collection of repulsive muffin-tin potentials (one andweach site:) of the form:

) _ VC) r < RKLAT

ViR = {0, otherwise (141)
with RY,- the muffin-tin radius at site, andV a positive constant, usually chosen to be
a few Rydbergs. It is physically expected (and computatipnarified) that for such a
potential the eigenvalue spectrum starts from an en&kgy somewhat smaller that;

a choice ofVo = 4 Ry is adequate to pushy,; high aboveEr. Schematically, this is
shown in Figure 1.

V(r)

Bulk Surface / Vacuum

NIV UL

Figure 1. Schematic representation of the repulsive pialeVit () and the crystal potentidl () in the bulk,
at a surface, and in the vacuum.

In this way, it is ensured that fdt < F,, the Green function of the reference system
dropsrapidly, and in practice exponentially, with distartbe same is true for the structural
Green functions. In order to demonstrate this, we introdlbepartial norm

1/2
E ()72 G" nn'
| | Z | lm, l’m’ (142)

@+ )R +1)!

Nu(|Bn— B, E) =
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with (27 + D! = (21 + 1)(21 — 1) ... (3)(1). In Figure 2 (left), the partial norms for an
fcc lattice are plotted fot = I as function of the distanc@®""'| for the choiceEl =
0.65 Ry which is representative for the Fermi energy of Cu. Theyampared with the
corresponding norms of the Green functigtior potential-free space in Figure 2 (right
panel)®

E

Il

0.650 Ry

[ R I
1077 + Scr eened 107! —7o0——

— system | e =
1073 (V=R L g8 T |

£
| -
o - L _\__._
c
5 1075 L 1075 L
t o | _| Free space
O
1077 A L 1077 — -
| ! | | ! [
1 2 1 2

Distance/Lattice—Constant

Figure 2. Screened (left panel) and unscreened (right ppadial norms (Eq. (142)) far= I’ andE = 0.65
Ry as function of the distance in units of the lattice constanan fcc lattice. The results fér= 0,1, 2, 3,4 are
shown from top to bottorfi.

The rapid decay of thesereenedstructural Green functions allows their direct eval-
uation in real space, with no need of a Brillouin zone intégra Thus the cumbersome
calculation of the free-spagg, 1 (E; E), which demands an Ewald summation for con-
vergence, is avoided. Instead, the matrices in equatiod) (@& be cut off in real space
at a finite value olﬁ" - R"'| (two lattice constants are enough for fcc), and solved by
direct matrix inversion, yieIdin@Q’Z,"' (E); itis straightforward to obtaid? ;, (k; E) by
a subsequent Fourier transform, since the summand is cdréirfmite| R» — B |.

8.3 Calculational Speed-up for Large Systems

At the end of Section 5 we commented that the computatioriaitdbr large systems,
with many atoms per unit cell, scales@§N2,) due to the matrix inversion involved in the
Dyson equation (see Eqg. (101)). We will now see why the singe¢ransformation allows
for a considerable acceleration of the calculations.

Using the notation introduced at equations (99-101), wesiden the Fourier-
transformed structural Green functions of a large systehtlze algebraic Dyson equation
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after the screening transformation:

1 . py'
G"(k; E)] . (143)

LL'

it (k; B) = [(1 - G'(F; B) At(E))

For large systems, where the interatomic distance in thiecetiiis large for several pairs
of atoms, the reference structural Green functif®&**'| are practically vanishing for
the correspondinfu, ') and can be neglected. Then the matrix which must be invarted i
Eqg. (143) is sparse, and one can use algorithms for inveesidmmultiplication of sparse
matrices to speed up the calculation. Moreover, one matultiptication in (143) can be
avoided by converting the equation as:

G=(1-G At)'G" = —At™  + At~ (At - GT) AL (144)

Since thet-matrix is site-diagonal, the inversidgm! and the multiplications witt—* are
numerically inexpensive.

This is particularly important in the case of layered systewhich are extending over
many monolayers in one direction. Then the indexgs are layer indexes, and reference
structural Green function matrix takes a block-tridiagdoem, given schematically as

[2200...000z]
zzx0...0000
Ozzz...0000
00zz...0000
................... (145)

Each symbok represents a matrix block, with its size being related todib&ance y* —

x| after Which|G2’ﬁf"| is considered negligible; the at the upper right and lower left
corners are present only if we have a repeated supercellnlyffost neighbors would
couple, the blocks would be matricesfirand L’ only (of siz€(Imax + 1)% X (Imax + 1)?).
For longer-range coupling one can use the principal laydartigjue by which several layers
are combined into a principal layer such that only neareghi®ring principal layers
couple. Then one obtains again the form Eq. (144), but novblbeks are submatrices
with L and L' indexes and andi’ indexes enumerating the layers within the principal
layer. The matrix structure displayed in Eq. (144) is therappgate one for the multilayer
geometry, whereas in slab geometry the lowest left blocklamtighest right block vanish.
For surfaces and interfaces of half-infinite crystals thérinéEq. (144)) has infinite range
to one or both sides.

In any case the numerical complexity is greatly reduced fé(v?) to O(N) for N
differentand)(log V) for N identical principal layers. Note that, for the calculatafithe
spin density (and therefore for self-consistent calcafed), only the on-site terms of the
real-system structural Green function are ne€ded,, the block-diagonal pars{ = p)

°Becaus@s (R* +7) = —LIm ["F G (R* + 7, R* + 7, E) dE.
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of Gﬁ’f,. This fact is included in th& (V) speed-up; if one wishes to calculate addi-

tional, non-diagonal matrix elements GfL"f e.g. for impurity or transport calculations,
the numerical cost i® (V) for each additional element, giving a total@{N?) if all N2
elements are to be calculated.

The treatment of matrices like Eq. (144) is well known in tifinding surface physics
and, for instance for the tight-binding linear-muffin-timbital methocf® Wenzien et af!
have presented an efficient formalism to calculate the Gfaection of an ideal semi-
infinite crystal and the correspondikg resolved densities of states.

9 Two-Dimensional Systems:
Finite-Thickness Slabs and Half-Infinite Crystals

The extension of the KKR method to the treatment of layerexesys, such as surfaces
and interfaces, is straightforward, and most efficient inithe screened KKR formalism,
whereO(N) scaling can be achieved (whelis the number of layers) as discussed in
Section 8.

When treating a layered system, a surface-adapted georseisgd, in the sense that
the two-dimensional periodicity of the atomic layers pkelab the surface (or interface) is
exploited while the direction perpendicular to these layetreated as if these were differ-
ent atoms in a unit cell. The Fourier transforms are done naghimthe two-dimensional
surface Brillouin zone (SBZ), and the corresponding irdéign is over aI%|| in the SBZ.
Thus, we have the analogue of Eq. (101),

Gg‘i’,"lﬂl (E) = 1 d2k|| e“?u'(ﬁ"—ﬁ"l) ei’?n-(i"—i“')
Aspz Jspz
. _1 . pp!
x [(1 — G"(k; B) At(E)) G"(k; E) (146)
Lr’

where nowR" are in-plane position vectors of the two-dimensional Bislettice, while
X" are vectors connecting atomic positions in different laydggy is the area of the SBZ.

In the case of surfaces, the vacuum is described by empsy siteaning that the lattice
structure is continued into the vacuum but no nuclei aretiposd there. In this way, the
vacuum potential and charge density are calculated wittemitultiple-scattering formal-
ism on the same footing as the bulk. In practice, three orficamolayers of vacuum sites
are enough for the calculation of the electronic structirg;(146) can be cutoff after that.

Depending on the problem, one can choose to use a slab oftfigteness in order
to represent a surface or interface, or one can choose tdhtdkenfinite boundary con-
ditions. In the latter case, and starting from a “boundaaykl, the crystal is continued
by periodically repeating the potential of this boundamelato all subsequent layers up
to infinity. One is then faced with a problem of inverting affinite matrix, which due
to the screening transformation has a tridiagonal form ésgeession (145)), in order to
find the Green function in the region of interest. This is deffieiently by the decimation
technique®® which is based on an iterative inversion of matrices of dedlsize at each
step. In this way the number of layers which are included & @reen function grows
exponentially with the number of steps, and the limit of tlafdmfinite crystal is rapidly
achieved.
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10 Self-Consistency Algorithm and Energy Contour Integraton

We proceed with a short description of the self-consistehggrithm for the calculation of
the electronic structure by the KKR method. As in all firsinpiples schemes, the central
guantity is the charge density which is found by solving th@hK-Sham equations. The
steps followed are:

1. Start with an input potentiali® (s is a spin index used in magnetic systems).
2. Calculate the wavefunctiods;, and H, and, from these, thematrixtrr:.

3. Calculate the structure constants of the referencersygtg, (k; E) (or the free-space
structure constants if the tight-binding formalism is nséd).

4. Calculate the-matrix of the reference systertief,, and the difference\t,; =
_ tref

tLLI LL'
5. Solve the algebraic Dyson equation by matrix inversiarte structural Green func-
tion and integrate over (see Eq. (98) fon = n' and forAt in the place of).

6. Calculate the Green function using the structural Gresctfon andRy, and Hy,
(Eq. (92)). Integrate the Green function from the bottonhefvalence band, up to
Er using a complex-energy contour (see below) and take theiiraggpart to find

the valence electron spin densipt() = —*Im féiF Gs(F,7;E) dE.

7. Calculate the core-electron wavefunctions and coretrele spin densityS(7); here
the multiple-scattering formalism is not needed, becalisebre wavefunctions are
assumed to be highly localized at the atomic sites. Obt@ndtal spin density; =

s+ ps-

8. Find the output potentiaV*"* by solving the Poisson equation and adding the
exchange-correlation potential. #°"* = V! to a reasonable accuracy, exit the
cycle, otherwise:

9. Properly mixi/2ut with V" to obtain a new input potential, and return to step 1.

We now comment on the energy integration for the valencegehdensity or spin

density. According to Eq. (21), the integral to be taken is

1 Er

pe(F) = —=Im Gy(7, 7 E) dE . (147)

™ Ep
In order to reach the desired accuracy for achieving saikistency, a large number of
integration points are required for the evaluation of E4.7(1 typically between 1000 and
2000. Fortunately, the numerical effort can be stronglyuoed by using the analytical
properties of the Green function. SinG€E) is analytical on the upper energy half-plane
(ImE > 0), the integral in Eqg. (147) can be evaluated on a contoutirsgaat the real
axis belowEy, continuing at compleXy = Egr + iI" (with Er = ReFE), and ending at
Er .32 The gain comes from the fact that, for larggrthe Green function has much less
structure than at the real axis. This can be understood bsiderng that the density of
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states corresponding to an eigenvadyés of the form—%ImG(E) = §(E — ¢;) for real

E, while it takes the form-1ImG(Eg + il') = T~ /((Eg — €;)* + I'?) for complex
E,i.e., itis broadened to a Lorentzian function of half-wiflt As a result, 30 integration
points are typically enough when integrating over such aaan Furthermore, for the
energies far from the real axis, fewkepoints are needed in the Brillouin zone integration
(Eg. (98)), reducing even more the numerical cost.

Cu DOS at EH#fi

50 I I
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-- =10 mRy .
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Figure 3. Density of states (DOS) of fcc Cu calculatedIfor= 100 mRy (typical for self-consistency calcula-
tions), 10 mRy, and 1 mRy (typical for density-of-statescakdtions). The smoothening of the Green function
for largerT", leading to a drastic decrease of the number of necessagration points, is evident.

In order to demonstrate the smoothening of the Green fumetith increasind”, we
show in Figure 3 the density of states of fcc Cu calculatedfer 100 mRy (typical for
self-consistency calculations), 10 mRy, and 1 mRy (typfoaldensity-of-states calcula-
tions).
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Appendix

Real Spherical Harmonics

The real spherical harmonid3,, are defined by a unitary transformation of the (usual)
complex spherical harmoni@s;,

SV +Yn) m>0
Yim = Y% m=0 (148)
75 Vel = Vi) m <.
The complex spherical harmonics are defined as
20+ 1 (1 —|m|)! ;
= (—1)(m+Im])/2 m| ¢
Y (0,6) = (=1)'mTm™ I (rm) P/™(cosB)e'™ (149)
wherePl‘m| (z) are the Legendre functions
p/ml _ 1 1 2\|m|/2 d+ml 2 _q\! 150
" (@) = 5 (1= ) (@ 1) (150)
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