000050079 001__ 50079
000050079 005__ 20200423204306.0
000050079 017__ $$aThis version is available at the following Publisher URL: http://apl.aip.org
000050079 0247_ $$2DOI$$a10.1063/1.2165279
000050079 0247_ $$2WOS$$aWOS:000234757100032
000050079 0247_ $$2Handle$$a2128/1431
000050079 037__ $$aPreJuSER-50079
000050079 041__ $$aeng
000050079 082__ $$a530
000050079 084__ $$2WoS$$aPhysics, Applied
000050079 1001_ $$0P:(DE-Juel1)VDB5614$$aGuzenko, V. A.$$b0$$uFZJ
000050079 245__ $$aRashba effect in InGaAs/InP parallel quantum wires
000050079 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2006
000050079 300__ $$a032102
000050079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050079 3367_ $$2DataCite$$aOutput Types/Journal article
000050079 3367_ $$00$$2EndNote$$aJournal Article
000050079 3367_ $$2BibTeX$$aARTICLE
000050079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050079 3367_ $$2DRIVER$$aarticle
000050079 440_0 $$0562$$aApplied Physics Letters$$v88$$x0003-6951
000050079 500__ $$aRecord converted from VDB: 12.11.2012
000050079 520__ $$aWe report on the Rashba effect in InGaAs/InP quantum wires with an effective width ranging from 1.18 mu m down to 210 nm. By measuring 160 wires in parallel universal conductance, fluctuations could be suppressed so that the characteristic beating effect in the magnetorestistance was observable down to very low magnetic fields. A characteristic shift of the nodes in the beating pattern was found for decreasing wire width. By assuming a realistic soft-wall potential, the experimentally observed node positions could be reproduced. For the range of measured wires, our study confirms that the Rashba coupling parameter does not change with wire width.
000050079 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000050079 588__ $$aDataset connected to Web of Science
000050079 650_7 $$2WoSType$$aJ
000050079 7001_ $$0P:(DE-Juel1)VDB13653$$aKnobbe, J.$$b1$$uFZJ
000050079 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b2$$uFZJ
000050079 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, T.$$b3$$uFZJ
000050079 7001_ $$0P:(DE-Juel1)VDB3169$$aBringer, A.$$b4$$uFZJ
000050079 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2165279$$gVol. 88, p. 032102$$p032102$$q88<032102$$tApplied physics letters$$v88$$x0003-6951$$y2006
000050079 8567_ $$uhttp://hdl.handle.net/2128/1431$$uhttp://dx.doi.org/10.1063/1.2165279
000050079 8564_ $$uhttps://juser.fz-juelich.de/record/50079/files/78280.pdf$$yOpenAccess
000050079 8564_ $$uhttps://juser.fz-juelich.de/record/50079/files/78280.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000050079 8564_ $$uhttps://juser.fz-juelich.de/record/50079/files/78280.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000050079 8564_ $$uhttps://juser.fz-juelich.de/record/50079/files/78280.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000050079 909CO $$ooai:juser.fz-juelich.de:50079$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000050079 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000050079 9141_ $$y2006
000050079 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050079 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000050079 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000050079 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000050079 9201_ $$0I:(DE-Juel1)VDB41$$d31.12.2006$$gISG$$kISG-1$$lInstitut für Halbleiterschichten und Bauelemente$$x2
000050079 970__ $$aVDB:(DE-Juel1)78280
000050079 980__ $$aVDB
000050079 980__ $$aJUWEL
000050079 980__ $$aConvertedRecord
000050079 980__ $$ajournal
000050079 980__ $$aI:(DE-Juel1)VDB381
000050079 980__ $$aI:(DE-Juel1)PGI-1-20110106
000050079 980__ $$aI:(DE-Juel1)PGI-9-20110106
000050079 980__ $$aUNRESTRICTED
000050079 980__ $$aFullTexts
000050079 9801_ $$aFullTexts
000050079 981__ $$aI:(DE-Juel1)PGI-1-20110106
000050079 981__ $$aI:(DE-Juel1)PGI-9-20110106