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Rashba effect in InGaAs/InP parallel quantum wires
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We report on the Rashba effect in InGaAs/InP quantum wires with an effective width ranging from
1.18 um down to 210 nm. By measuring 160 wires in parallel universal conductance, fluctuations
could be suppressed so that the characteristic beating effect in the magnetorestistance was
observable down to very low magnetic fields. A characteristic shift of the nodes in the beating
pattern was found for decreasing wire width. By assuming a realistic soft-wall potential, the
experimentally observed node positions could be reproduced. For the range of measured wires, our
study confirms that the Rashba coupling parameter does not change with wire width. © 2006
American Institute of Physics. [DOI: 10.1063/1.2165279]

The concept of many recently proposed spin electronic
devices relies on one-dimensional semiconductor structures
in conjunction with the Rashba effect. Here, the basic idea is
the control of the spin orientation by utilizing the Rashba
spin-orbit coupling.1 In these structures, the inversion asym-
metry imposed by an asymmetric macroscopic potential pro-
file of a semiconductor quantum well results in lifting of the
spin degeneracy. The Rashba spin-orbit coupling leads to a
spin precession of propagating electrons. By means of a gate
electrode on top of the quantum well, the shape of the po-
tential profile and thus the degree of spin-precession can be
controlled.”® This mechanism opens up the possibility to de-
sign electronic devices, where the switching process is real-
ized by changing the spin orientation in the semiconductor.
Indeed, this scheme is the basis for the well-known spin
transistor proposed by by Datta and Das.* Very recently, a
number of spin electronic devices have been proposed,
which explicitly make use of one-dimensional channels, e.g.,
nonmagnetic spin-ﬁlters,5 spin-polarizers,6 or ring-shaped in-
terference devices.

In order to realize one of the structures discussed above,
it is essential to gain detailed knowledge about the transport
properties of one-dimensional structures with Rashba spin-
orbit coupling. Theoretically their transport properties have
been investigated first by Moroz and Barnes® and by Mireles
and Kirczenow.’ Regarding experimental studies on wire
structures, the presence of Rashba spin-orbit coupling was
confirmed by observing a characteristic beating pattern in the
magnetoresistance,10’11 similar to the case of a two-
dimensional electron gas (2DEG)."*"® However, for very
narrow wires a systematic shift of the node of the beating
pattern was found. Qualitatively, this shift could be explained
by the effect of the geometrical confinement on the magne-
tosubbands in the semiconductor, as was theoretically shown
for a wire with parabolic confinement potential.14

In this letter, we report on a concise experimental and
theoretical investigation of the Rashba effect in InGaAs/InP
quantum wires. In contrast to previous experiments, a large
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number of wires have been measured in parallel. This al-
lowed us to suppress universal conductance fluctuations,
which are usually superimposed on the Shubnikov—-de Haas
(SdH) oscillations. Consequently, the beating pattern in the
magnetoresistance could be resolved down to very low mag-
netic fields. A systematic change of the beating pattern was
found for narrower wires. In order to explain the measured
results, detailed simulations of the energy spectrum were per-
formed taking a realistic potential profile into account.

The Ings53Gag47As/Ing 77Gag,3As/InP  heterostructure
used for our study was grown by metalorganic vapor phase
epitaxy on a semi-insulating InP substrate. The 2DEG is lo-
cated in a strained 10 nm thick Iny;;Gay,3As layer. The
lower barrier of the quantum well is formed by an InP layer,
while for the upper layer a 70 nm thick Injs3Gag 4;As layer
is used. The electrons are provided by a 10 nm thick InP
dopant layer separated by 20 nm of InP from the quantum
well. Electron-beam lithography and reactive ion etching
were employed to define the quantum wire structures.'’ A
layer sequence of Ni/AuGe/Ni/Au was used to prepare
ohmic contacts. A number of 160 identical wires each
620 um long were connected in parallel. Five sets of wires
were investigated with a geometrical width ranging from
1220 nm down to 340 nm. From the analysis of the SdH
oscillations of a Hall bar sample (Fig. 1), a carrier concen-
tration of n,p=5.3X10""cm™ and a mobility of u
=205 000 cm?/V s at 0.6 K were determined. A clear beat-
ing pattern was observed in the SdH oscillations indicating
the presence of Rashba spin-orbit coupling. For the 2DEG a
Rashba coupling parameter of az=4.84X10"'2eV m was
extracted from the 1/B fast Fourier transform.'’

As can be seen in Fig. 1(a), a pronounced beating pattern
is observed in the magnetoresistance R, for all sets of quan-
tum wires, except for the set of very narrow wires (340 nm).
From the oscillations at higher magnetic fields, it was con-
firmed that the electron concentration of all wires corre-
sponds to the concentration of the 2DEG. For the following
analysis of the transport properties, the relevant width of the
wires is the effective electrical width W,g. Information on
this parameter can be obtained from the position B, of the
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FIG. 1. (Color online) (a) SdH oscillations of quantum wires of different
effective widths (log-scale) at 0.6 K. The first-order node of the beating
pattern is indicated by an arrow. The position of B,,,, is indicated by a circle.
The inset shows a magnified signal around the first-order node of the
410 nm wide wire. (b) dR,./dB vs B of the 1.18 um, 570 nm, and 410 nm
wide wires. The second-order nodes are indicated by arrows.

broad resistance maximum observed at low magnetic fields
[marked by a circle in Fig. 1(a)]: W~0.55ks/eBp,,. "
Here, kf is the Fermi wave number. The peak at B, origi-
nates from diffusive boundary scattering. Owing to carrier
depletion at the boundary of the quantum wires, the effective
width is smaller than the geometrical width, i.e., W of the
narrowest set of wires is 210 nm compared to the geometri-
cal width of 340 nm. For the following, we will exclusively
refer to the effective width.

A closer look on the beating pattern of the different sets
of wires [Fig. 1(a)] reveals that the position of the first-order
node does not change with decreasing wire width. In con-
trast, the second-order node initially located at 0.3 T for the
Hall bar structure shifts to higher magnetic fields for nar-
rower wires. In order to better identify the position of the
second-order node, the differential resistance dR,./dB was
calculated [Fig. 1(b)]. The magnetoresistance of the narrow-
est wires (W_=210 nm) does not show any oscillations be-
low 1 T due to the strong effect of diffusive boundary scat-
tering. The node positions of the beating patterns for all wire
widths can be found in Fig. 2.

The beating pattern in the magnetoresistance results
from an interplay of an external magnetic field B and spin-
orbit interaction. Without spin-orbit coupling, the magnetic
field organizes the spectrum of the electrons in a 2DEG in a
set of degenerate Landau levels. Their energies increase lin-
early with B. The spin-orbit interaction mixes the Landau
levels and leads to an inhomogeneous level density, respon-
sible for the beating pattern. For a 2DEG, the energy levels
can be determined by an analytical formula for the magne-
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FIG. 2. (Color online) Positions of the first- and second-order nodes of the
beating pattern experimentally observed in the magnetoresistance (x). The
node positions obtained from the simulation are marked by filled squares.

toresistance depending on B, ay, the Fermi energy Ep, the
effective mass m”, the g factor of the electron s]pins, and the
level broadening I', due to impurity scattering. %13 The ma-
terial parameters m", g, Ep, ag, and I’ for our 2DEG had
been determined by a least mean-square fit of the theoretical
formula to the experimentally measured magnetoresistance
[see Fig. 3(a)]. We find for our sample: m =0.039m,,
g=-4, Er=32.74 meV, and I'=0.74 meV. For the Rashba
coupling parameter, a value of az=5.38X10"12eV m was
found. The fact that the experimentally obtained value of ay
is smaller can be attributed to the inaccuracy connected to
the extraction of ay by a fast Fourier transform."

With increasing B, the Landau levels cross the Fermi
energy. Spin-orbit coupling strongly affects the rate by which
this crossing takes place. This allows a direct determination
of the node position in the SdH oscillations, as illustrated in
Fig. 3. When plotting the B positions at which the energy of
a Landau level equals E. versus their spacing, one finds po-
sitions, marked by M, with neighboring levels almost degen-
erate and positions N with equal spacing between levels. As
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FIG. 3. (Color online) Spacing of neighboring Landau levels crossing E at
different magnetic fields for a 2DEG (a) and a 1 um wide wire (b). Position
of nodes (N) and maxima (M) in the beating pattern of SdH oscillations. The
experimental and theoretical curve of R,, of the 2DEG is added in (a) for
comparison. A schematic illustration of the wire potential is shown in (b) as
an inset.
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can be seen by direct comparison to the experimental curve
shown in Fig. 3(a), at N the SdH oscillations have a node,
while at M a large amplitude is found.

For wires of limited width W, no analytical solution for
the electron levels is known in presence of spin-orbit cou-
pling and a magnetic field, but there is a numerical solution
for a system laterally confined by a parabolic potential. The
parabolic confinement is normally chosen to discuss the
properties of quantum wires. However, as shown by simula-
tions of quasi one-dimensional systems with W much larger
than the Fermi wavelength, it is more appropriate to model
the electron confinement by a quasi-rectangular soft-walllike
potential, as sketched in Fig. 3(b) (inset)."® We therefore de-
veloped an algorithm to solve the Schrodinger equation for
electrons in a wire for an arbitrary form of the confining
potential. With this algorithm, we were able to calculate the
B positions with level energies equal E.

The spectrum for electrons in a wire transforms gradu-
ally from degenerate Landau levels to quasi one-dimensional
subbands, when the diameter of the Landau orbit gets com-
parable to W with decreasing B. When W decreases more and
more, nodes in the beating pattern disappear and below a
critical W there is no node anymore. For our structure with
an assumed soft-wall potential, this critical width is roughly
400 nm, as can be seen in Fig. 2. Up to 600 nm, two nodes
can be detected. Between 600 nm and 800 nm, the second
node splits so that for W>600 nm a third additional node
can clearly be identified.

We determined the nodal positions with the material pa-
rameters found for the 2DEG and they agree well with the
experimentally observed positions, as can be seen in Fig. 2.
However, the third-order node expected from the simulation
could not be resolved experimentally, due to level broaden-
ing by scattering processes. The first node remains at ap-
proximately the same position for all wire widths, since at
these large magnetic fields the Landau energy exceeds the
confinement energy. For parabolic confinement, the positions
of the nodes depend on W much more strongly so that no
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reasonable agreement with experiment could be achieved."
Furthermore, variation of «ay in the simulation led to a large
deviation of the nodes from the experimentally observed
ones. Thus, our simulations confirm that ay does not change
with W, at least down to the wire width where no beating
pattern could be observed anymore.

In conclusion, by measuring parallel InGaAs/InP quan-
tum wires, the beating effect in the SdH oscillations could be
resolved down to very low magnetic fields. The shift of the
nodes in the beating pattern with decreasing wire width
could be explained by the additional quantization due to car-
rier confinement in a soft-wall potential.
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