000050134 001__ 50134
000050134 005__ 20240712100827.0
000050134 0247_ $$2WOS$$aWOS:000234892500001
000050134 0247_ $$2Handle$$a2128/750
000050134 037__ $$aPreJuSER-50134
000050134 041__ $$aeng
000050134 082__ $$a550
000050134 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000050134 1001_ $$0P:(DE-Juel1)VDB14772$$aKrebsbach, M.$$b0$$uFZJ
000050134 245__ $$aSeasonal cycles and variability of O3 and H2O in the UT/LMS during SPURT
000050134 260__ $$aKatlenburg-Lindau$$bEGU$$c2006
000050134 300__ $$a109 - 125
000050134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050134 3367_ $$2DataCite$$aOutput Types/Journal article
000050134 3367_ $$00$$2EndNote$$aJournal Article
000050134 3367_ $$2BibTeX$$aARTICLE
000050134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050134 3367_ $$2DRIVER$$aarticle
000050134 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v6$$x1680-7316
000050134 500__ $$aRecord converted from VDB: 12.11.2012
000050134 520__ $$aAirborne high resolution in situ measurements of a large set of trace gases including ozone (O-3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003.In the LMS a distinct spring maximum and autumn minimum is observed in O-3, whereas its annual cycle in the UT is shifted by 2-3 months later towards the end of the year. The more variable H2O measurements reveal a maximum during summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments.For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O-3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer.Normalised mixing entropy values for O-3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.
000050134 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000050134 588__ $$aDataset connected to Web of Science
000050134 650_7 $$2WoSType$$aJ
000050134 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b1$$uFZJ
000050134 7001_ $$0P:(DE-HGF)0$$aBrunner, D.$$b2
000050134 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b3$$uFZJ
000050134 7001_ $$0P:(DE-HGF)0$$aHegglin, M. I.$$b4
000050134 7001_ $$0P:(DE-Juel1)VDB3900$$aMottaghy, D.$$b5$$uFZJ
000050134 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b6$$uFZJ
000050134 7001_ $$0P:(DE-Juel1)129155$$aSpelten, N.$$b7$$uFZJ
000050134 7001_ $$0P:(DE-HGF)0$$aWernli, H.$$b8
000050134 773__ $$0PERI:(DE-600)2069847-1$$gVol. 6, p. 109 - 125$$p109 - 125$$q6<109 - 125$$tAtmospheric chemistry and physics$$v6$$x1680-7316$$y2006
000050134 8564_ $$uhttps://juser.fz-juelich.de/record/50134/files/78341.pdf$$yOpenAccess
000050134 8564_ $$uhttps://juser.fz-juelich.de/record/50134/files/78341.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000050134 8564_ $$uhttps://juser.fz-juelich.de/record/50134/files/78341.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000050134 8564_ $$uhttps://juser.fz-juelich.de/record/50134/files/78341.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000050134 909CO $$ooai:juser.fz-juelich.de:50134$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000050134 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000050134 9141_ $$y2006
000050134 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050134 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000050134 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000050134 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000050134 970__ $$aVDB:(DE-Juel1)78341
000050134 9801_ $$aFullTexts
000050134 980__ $$aVDB
000050134 980__ $$aJUWEL
000050134 980__ $$aConvertedRecord
000050134 980__ $$ajournal
000050134 980__ $$aI:(DE-Juel1)IEK-7-20101013
000050134 980__ $$aI:(DE-Juel1)VDB1045
000050134 980__ $$aUNRESTRICTED
000050134 980__ $$aFullTexts
000050134 981__ $$aI:(DE-Juel1)ICE-4-20101013
000050134 981__ $$aI:(DE-Juel1)IEK-7-20101013
000050134 981__ $$aI:(DE-Juel1)VDB1045