001     50432
005     20240610120628.0
024 7 _ |2 DOI
|a 10.1142/S0129183105007972
024 7 _ |2 WOS
|a WOS:000232638300002
037 _ _ |a PreJuSER-50432
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Bartolozzi, M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Self-Similar Log-Periodic Structures in Western Stock Markets from 2000
260 _ _ |a Singapore [u.a.]
|b World Scientific
|c 2005
300 _ _ |a 1347 - 1361
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a International Journal of Modern Physics C
|x 0129-1831
|0 14942
|y 9
|v 16
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The presence of log-periodic structures before and after stock market crashes is considered to be an imprint of an intrinsic discrete scale invariance (DSI) in this complex system. The fractal framework of the theory leaves open the possibility of observing self-similar log-periodic structures at different time scales. In the present work, we analyze the daily closures of four of the most important indices worldwide since 2000: the DAX for Germany and the NASDAQ-100, the S&P 500 and the Dow Jones for the United States. The qualitative behavior of these different markets is similar during the temporal frame studied. Evidence is found for decelerating log-periodic oscillations of duration about two years and starting in September 2000. Moreover, a nested sub-structure starting in May 2002 is revealed, bringing more evidence to support the hypothesis of self-similar, log-periodic behavior. Ongoing log-periodic oscillations are also revealed. A Lomb analysis over the aforementioned periods indicates a preferential scaling factor lambda similar to 2. Higher order harmonics are also present. The spectral pattern of the data has been found to be similar to that of a Weierstrass-type function, used as a prototype of a log-periodic fractal function.
536 _ _ |a Physik der Hadronen
|c M01
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK241
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a discrete scale invariance
653 2 0 |2 Author
|a econophysics
653 2 0 |2 Author
|a complex systems
700 1 _ |a Drozdz, S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Leinweber, D. B.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Speth, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)131339
700 1 _ |a Thomas, A. W.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1142/S0129183105007972
|g Vol. 16, p. 1347 - 1361
|p 1347 - 1361
|q 16<1347 - 1361
|0 PERI:(DE-600)2006526-7
|t International journal of modern physics / C
|v 16
|y 2005
|x 0129-1831
909 C O |o oai:juser.fz-juelich.de:50432
|p VDB
913 1 _ |k M01
|v Physik der Hadronen
|l Physik der Hadronen
|b Materie
|0 G:(DE-Juel1)FUEK241
|x 0
914 1 _ |y 2005
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IKP-TH
|l Institut 3 (Theoretische Kernphysik)
|d 31.12.2006
|g IKP
|0 I:(DE-Juel1)VDB223
|x 0
970 _ _ |a VDB:(DE-Juel1)78707
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-4-20090406
981 _ _ |a I:(DE-Juel1)IKP-3-20111104


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21