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Phase separation and dilution in implanted Mn,Ge,_, alloys
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The structural and electronic properties of Mn,Ge,_, alloys (x=<0.15) fabricated by ion implantation
are investigated by means of x-ray diffraction and synchrotron radiation photoemission
spectroscopy. The diffraction patterns point to the presence of ferromagnetic MnsGe; nanoparticles;
however, valence band spectra, interpreted by means of accurate ab initio calculations including
Hubbard-like correlations, show clear fingerprints of an effective substitutional Mn dilution in the
Ge semiconducting host. © 2006 American Institute of Physics. [DOI: 10.1063/1.2171485]

The achievement of ferromagnetism (FM) in Ge by in-
clusion of magnetic dopants (Mn, Cr, Fe) has attracted con-
siderable attention due to its full compatibility with the main-
stream silicon technology.1 However, the magnetic response
of most of the Mn,Ge,_, alloys realized so far is due to
Mn-rich separated phases,z’3 and only few are indicative of
an efficient dilution."* An homogeneous distribution of mag-
netic impurities in the semiconducting (SC) matrix is a fun-
damental requirement to obtain, at the same time, SC func-
tionalities and magnetic order.” On the other hand, phase
separation (i.e., formation of metal-rich precipitates showing
FM at room temperature), is also extremely interesting on its
own both from a fundamental as well as from a technological
standpoint.6 The investigation of the structural and electronic
properties of the alloy—as a function of the Mn concentra-
tion x and of the interplay between the two above-mentioned
regimes—is therefore of primary interest for a full under-
standing of the magnetic properties.

Ion implantation at a fixed beam energy produces im-
planted films with varying concentration profiles. This appar-
ent intrinsic limitation becomes an advantage as concentra-
tion dependent investigations can be performed on a single
sample. Here we report on a systematic experimental and
theoretical study as a function of Mn x concentration of the
structural and electronic properties of ion implanted
Mn,Ge,_, alloys (0.01 <x<0.15).

Chemically cleaned intrinsic Ge(100) single crystal wa-
fers were implanted with 100 keV Mn* ions at two different
doses of 4% 10'® and 2% 10'® at./cm? at a substrate tem-
perature of 300 °C to avoid amorphization (as in Ref. 7).
The samples have been studied with: x-ray diffraction (XRD)
(Siemens D5000 diffractometer with Cu K« radiation) oper-
ating in the Bragg—Brentano mode, standard x-ray photo-
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emission (PE) spectroscopy for depth profiling (XPS, ESCA
PHI 1257), and synchrotron radiation PE for valence band
(VB) investigation (VUV Beamline ELETTRA, Trieste). Ac-
curate first-principles calculations have been performed
within the generalized gradient approximation to the density
functional theory, using the full-potential linearized aug-
mented plane wave method in the FLEUR implementation.8

Figure 1(a) shows the XPS depth profile characterization
of the Mn,Ge,_, samples, after absolute calibration of the
Mn/Ge relative cross section on a MnsGe; 550-A-thick film
molecular beam epitaxy (MBE) grown on Ge(111).” The Mn
peak concentrations are 0.15+0.01 and 0.09+0.01 for the
two different doses of 4 X 10'% and 2 X 10' at./cm?, respec-
tively. These values are significantly larger than those typical
of diluted magnetic semiconductors. The Mn distribution
profiles are asymmetric with positive skewness and with the
same parameters for projected range (50+5 nm), and end of
range 130+5 nm. Figure 1(b) shows the XRD spectra of the
implanted Mn,Ge,_, samples. Beside the (200) at 31.67° and
(400) at 66.018° diffraction peaks of the Ge matrix, there is a
diffraction peak at 35.45° (also non negligible for the 2
X 10'® at./cm? case). This is the (002) peak relative to the
MnsGe; phase,”'” easily distinguishable from the (002)
Mn,;Geg phase at 0.2° lower diffraction angle. Considering
the relative Mn/Ge concentrations of Fig. 1 evidently the
Mn;sGe; diffraction peak is due to phase separation into Mn-
rich clusters embedded in the Ge matrix. By means of the
Scherrer formula, a detailed analysis after acquisition with
high signal-to-noise ratio of the spectral region around this
peak allows determination of the average cluster sizes, that
are 12+1 and 8+1 nm for the two doses of 4 X 10'¢ and 2
X 10'® at./cm?, respectively. Worth noting is that the esti-
mated volume ratio of the clusters in the two implanted al-
loys is (8/12)3=0.3. This is significantly lower than the 1:2
ratio expected from the doubling of the Mn dose in the two
alloys. This indicates that, with halving the Mn dose in the
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FIG. 1. (a) XPS depth profiles showing the in-depth Mn concentration for
the 4 X 10' (solid curve) and 2X 10'® (dashed curve) Mn ion doses in
Ge(001) implanted samples. Upper curves: corresponding Ge concentra-
tions. The vertical dashed lines on the 4 X 10'® alloy curve indicate the
depths of subsequent sputtering in correspondence of which the valence
band spectra have been taken (see Fig. 2). (b): XRD patterns for the two ion
implanted MnGe samples.

implanted region, there is a less effective migration of Mn
into phase separated Mn-rich clusters with a significant frac-
tion of Mn presumably diluted in the Ge matrix. This evi-
dence of phase coexistence is clarified and strenghthened by
our VB PE investigation. In this case we focused on the 4
X 10'® at./cm? dose that allowed to span the larger x range.

Figure 2(a) reports, from bottom to top, the VB spectra
obtained after seven subsequent sputter (2.0 keV) annealing
(200 °C) cycles (estimated etch rate 1.8 nm/min), each one
stopped at the following estimated depths with respect to the
pristine nonsputtered surface [see dashed lines in Fig. 1(a)]
(i) 11 nm, (ii) 22 nm, (iii) 38 nm, (iv) 50 nm, (v) 63 nm, (vi)
77 nm, and (vii) 106 nm, corresponding to Mn concentration
values of 0.025, 0.08, 0.13, 0.15, 0.12, 0.10, and 0.05 respec-
tively. The experimental settings (Av=120 eV, normal emis-
sion mode, 7° analyzer angular acceptance) are chosen so
that the angle integrated electronic structure of the sample is
probed with few nanometers in depth sensitivity. Indeed,
from Fig. 1(a) an estimate of the average rate of in depth
variation of x is 1.5X 107 nm~!, then each VB spectrum
after each sputter annealing cycle can be really assigned to a
fixed Mn concentration x.' = A spectral signature of MnsGe;
precipitates is readily noticeable in all the VB spectra of Fig.
2(a): a high spectral density at the Fermi level (E). Both
theory]2 and PE experiments on epitaxial MnSGe313 show a
high density of the Mn d derived states at Er. Since the Ge
matrix is common to all sampled regions, the spectral infor-
mation due to the variation of the Mn content in the Mn-Ge
implanted sample can be more easily disentangled by means
of the difference spectra as shown in panels (b) and (c) of the
same figure. Such spectra give an experimental estimate of
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FIG. 2. (a) Valence band spectra taken on the 4 X 10'® Mn ion dose sample
at various depths (Mn surface concentration, see Fig. 1) after seven subse-
quent sputtering cycles (spectra are normalized to unit at their common peak
energy value at 2.0 eV). (b) and (c) Corresponding incremental difference
spectra (horizontal dashed lines are the corresponding zero levels). The solid
curve superimposed on the (v)-(iv) data in (c) is the Mn projected DOS for
substitutional Mn in Ge [see Fig. 3(a)].

the Mn projected density of states (PDOS) of the alloy. In
Fig. 2(b) there is a clear increase (decrease) of the density of
states at E upon increasing (decreasing) x. This is assigned
to an increase (decrease) with depth of the volume concen-
tration of MnsGe; crystallites in the host Ge matrix. In Fig.
2(c) the same difference spectra are reported in the region
between 2.0 and 6.0 eV below Ep. The first three (from bot-
tom to top) difference curves, obtained increasing x, show a
hump centered at 4.8 eV in good agreement with a similar
feature of the MnsGes phase.13 Remarkably, when consider-
ing difference spectra related to a decrease in the Mn con-
centration a positive hump appears at 4.0 eV below Ep. If
Mn was incorporated exclusively in precipitates, this experi-
mental evidence would not be explained. Rather, only nega-
tive features would be expected. Evidently, as x in the alloy
decreases, there is an increase of the spectral weight related
to features that are typical of a Mn—Ge diluted alloy. Indeed,
the experimental Mn PDOS of curves (v)-(iv), (vi)-(v) in Fig.
2(c) are very similar to those obtained in PE investigations of
MBE Mn doped III-V SC like Ga,_Mn,As'* and
Inl_anxAs,15 where Mn dilution in substitutional sites is
claimed. Thus, comparison of our spectra with the Mn PDOS
from ab initio calculation for a diluted MnGe alloy is worth-
while and enlightening.

In Fig. 3 we report the Mn PDOS for the substitutional
and interstitial case, with and without introduction of
Hubbard-like correlations. By symmetry, e orbitals very
weakly hybridize with host-like states, whereas ¢, states form
bonding-antibonding (b—ab) pairs with Ge p states in each
spin channel.'®  Within general gradient approximation
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FIG. 3. PDOS of (a) substitutional and (b) interstitial Mn in Ge with and
without U (upper and lower lines, respectively). Upon inclusion of U, the
Mn PDOS for different concentrations (6.25% and 12.5%) is also reported.
Inset: Orbital (, and e) and spin resolved Mn PDOS.

(GGA) and without U, e* and 7, states are fully occupied and
lie in a similar energy range (~-2eV), as previously
found;'” the singly occupied 7, crosses Ep (giving rise to
two holes, having both Mn d and Ge p character), whereas 7,
lies just below Ep. Upon introduction of U, both e¢* and 7
states are shifted towards higher binding energies and are
remarkably localized in energy: the 7}, state is much less hy-
bridized than in bare GGA and appears as an atomic-like
peak, as the nonhybridized e state. As U is introduced, the
Mn weight on the t:jb state (and, as a consequence, on states
close to Ep) is strongly reduced and the holes have a larger
Ge p character. The Mn (total) magnetic moment changes
from 3.2 ug (3.0 up) to 3.8 ug (3.2 ug) without and with
U, respectively. The Mn electronic configuration is therefore
d’+2 holes in both cases, but the hole acquires more Ge
p-like character, losing Mn d weight. For Mn in Ge, there is
an evident inadequacy of bare GGA (or local spin density
approximation, as well) in reproducing the VB spectra and a
GGA+U approach is needed,'® with an estimate of the Hub-
bard parameter U from first principles19 of about U
~3-4ev. 2 Indeed, once the Hubbard parameter is set to
U=4 eV, an excellent agreement is found between theory
and experiment [see Figs. 3(a) and 2(c)] not only as for the
energy position of the experimental data, but also for the
peak width. This picture is kept upon variation of x: there are
no basic differences in doubling (or halving, not shown) the
transition-metal doping [see Fig. 3(a)]. Instead, similar GGA
and GGA+U calculations for Mn,Ge;_, alloys with Mn in
the interstitial do not produce a good agreement even upon
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the necessary introduction of U. Thus our theoretical inves-
tigation gives strong indication that Mn is substitutionally
diluted in the Ge matrix.

In summary, ion-implanted Mn,Ge,_, alloys have been
studied as a function of the Mn concentration, with XRD and
VB PE. While x-ray diffraction reveals the presence of
Mn;s;Ge; ferromagnetic nanoparticles, the presence of a di-
luted Mn phase in coexistence with the cluster phase is
clearly demonstrated with photoemission. In particular, com-
parison of VB data with ab initio GGA+ U calculations show
that a typical feature arising upon decreasing x (i.e., the peak
at —4 eV in the PE spectra) can be considered as a fingerprint
of effective dilution of substitutional Mn in the Ge matrix.
We also demonstrated that ion implantation produces a sig-
nificant effective Mn dilution into Ge even at extremely high
doses of the magnetic impurities.
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