001     50649
005     20240610120638.0
024 7 _ |2 pmid
|a pmid:16462740
024 7 _ |2 DOI
|a 10.1038/nmat1581
024 7 _ |2 WOS
|a WOS:000235707900021
037 _ _ |a PreJuSER-50649
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Vliegenthart, G. A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB10822
245 _ _ |a Forced crumpling of self-avoiding elastic sheets
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2006
300 _ _ |a 216 - 221
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nature Materials
|x 1476-1122
|0 11903
|v 5
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Thin elastic sheets are important materials across length scales ranging from mesoscopic (polymerized membranes, clay platelets, virus capsids) to macroscopic (paper, metal foils). The crumpling of such sheets by external forces is characterized by the formation of a complex pattern of folds. We have investigated the role of self-avoidance, the fact that the sheets cannot self-intersect, for the crumpling process by large-scale computer simulations. At moderate compression, the force-compression relations of crumpled sheets for both self-avoiding and phantom sheets are found to obey universal power-law behaviours. However, self-avoiding sheets are much stiffer than phantom sheets and, for a given compression, develop many more folds. Moreover, self-avoidance is relevant already at very small volume fractions. The fold-length distribution for crumpled sheets is determined, and is found to be well-described by a log-normal distribution. The stiffening owing to self-avoidance is reflected in the changing nature of the sheet-to-sheet contacts from line-like to two-dimensionally extended with increasing compression.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Biocompatible Materials: chemistry
650 _ 2 |2 MeSH
|a Blood Platelets: chemistry
650 _ 2 |2 MeSH
|a Capsid: chemistry
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Elasticity
650 _ 7 |0 0
|2 NLM Chemicals
|a Biocompatible Materials
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1038/nmat1581
|g Vol. 5, p. 216 - 221
|p 216 - 221
|q 5<216 - 221
|0 PERI:(DE-600)2088679-2
|t Nature materials
|v 5
|y 2006
|x 1476-1122
856 7 _ |u http://dx.doi.org/10.1038/nmat1581
909 C O |o oai:juser.fz-juelich.de:50649
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-TH-II
|l Theorie II
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB31
|x 0
970 _ _ |a VDB:(DE-Juel1)79183
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21