000050688 001__ 50688
000050688 005__ 20200402210114.0
000050688 0247_ $$2pmid$$apmid:16452929
000050688 0247_ $$2DOI$$a10.1038/nature04520
000050688 0247_ $$2WOS$$aWOS:000235685700051
000050688 037__ $$aPreJuSER-50688
000050688 041__ $$aeng
000050688 082__ $$a070
000050688 084__ $$2WoS$$aMultidisciplinary Sciences
000050688 1001_ $$0P:(DE-Juel1)VDB8633$$aMoukhametzianov, R.$$b0$$uFZJ
000050688 245__ $$aDevelopment of the signal in sensory rhodopsin and its transfer to the cognate transducer
000050688 260__ $$aLondon [u.a.]$$bNature Publising Group$$c2006
000050688 300__ $$a115 - 119
000050688 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050688 3367_ $$2DataCite$$aOutput Types/Journal article
000050688 3367_ $$00$$2EndNote$$aJournal Article
000050688 3367_ $$2BibTeX$$aARTICLE
000050688 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050688 3367_ $$2DRIVER$$aarticle
000050688 440_0 $$04484$$aNature$$v440$$x0028-0836
000050688 500__ $$aRecord converted from VDB: 12.11.2012
000050688 520__ $$aThe microbial phototaxis receptor sensory rhodopsin II (NpSRII, also named phoborhodopsin) mediates the photophobic response of the haloarchaeon Natronomonas pharaonis by modulating the swimming behaviour of the bacterium. After excitation by blue-green light NpSRII triggers, by means of a tightly bound transducer protein (NpHtrII), a signal transduction chain homologous with the two-component system of eubacterial chemotaxis. Two molecules of NpSRII and two molecules of NpHtrII form a 2:2 complex in membranes as shown by electron paramagnetic resonance and X-ray structure analysis. Here we present X-ray structures of the photocycle intermediates K and late M (M2) explaining the evolution of the signal in the receptor after retinal isomerization and the transfer of the signal to the transducer in the complex. The formation of late M has been correlated with the formation of the signalling state. The observed structural rearrangements allow us to propose the following mechanism for the light-induced activation of the signalling complex. On excitation by light, retinal isomerization leads in the K state to a rearrangement of a water cluster that partly disconnects two helices of the receptor. In the transition to late M the changes in the hydrogen bond network proceed further. Thus, in late M state an altered tertiary structure establishes the signalling state of the receptor. The transducer responds to the activation of the receptor by a clockwise rotation of about 15 degrees of helix TM2 and a displacement of this helix by 0.9 A at the cytoplasmic surface.
000050688 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000050688 588__ $$aDataset connected to Web of Science, Pubmed
000050688 650_2 $$2MeSH$$aBiological Evolution
000050688 650_2 $$2MeSH$$aCrystallography, X-Ray
000050688 650_2 $$2MeSH$$aCytoplasm: metabolism
000050688 650_2 $$2MeSH$$aHalobacteriaceae: chemistry
000050688 650_2 $$2MeSH$$aHalobacteriaceae: cytology
000050688 650_2 $$2MeSH$$aHalobacteriaceae: metabolism
000050688 650_2 $$2MeSH$$aHalorhodopsins: chemistry
000050688 650_2 $$2MeSH$$aHalorhodopsins: metabolism
000050688 650_2 $$2MeSH$$aHydrogen Bonding
000050688 650_2 $$2MeSH$$aIsomerism
000050688 650_2 $$2MeSH$$aLight Signal Transduction: physiology
000050688 650_2 $$2MeSH$$aModels, Molecular
000050688 650_2 $$2MeSH$$aProtein Conformation
000050688 650_2 $$2MeSH$$aSensory Rhodopsins: chemistry
000050688 650_2 $$2MeSH$$aSensory Rhodopsins: metabolism
000050688 650_7 $$00$$2NLM Chemicals$$aHalorhodopsins
000050688 650_7 $$00$$2NLM Chemicals$$aSensory Rhodopsins
000050688 650_7 $$2WoSType$$aJ
000050688 7001_ $$0P:(DE-HGF)0$$aKlare, J. P.$$b1
000050688 7001_ $$0P:(DE-Juel1)VDB4616$$aEfremov, R.$$b2$$uFZJ
000050688 7001_ $$0P:(DE-Juel1)VDB59848$$aBaeken, C.$$b3$$uFZJ
000050688 7001_ $$0P:(DE-HGF)0$$aGöppner, A.$$b4
000050688 7001_ $$0P:(DE-Juel1)VDB886$$aLabahn, J.$$b5$$uFZJ
000050688 7001_ $$0P:(DE-HGF)0$$aEngelhard, M.$$b6
000050688 7001_ $$0P:(DE-Juel1)131957$$aBüldt, G.$$b7$$uFZJ
000050688 7001_ $$0P:(DE-Juel1)VDB482$$aGordeliy, V. I.$$b8$$uFZJ
000050688 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/nature04520$$gVol. 440, p. 115 - 119$$p115 - 119$$q440<115 - 119$$tNature <London>$$v440$$x0028-0836$$y2006
000050688 8567_ $$uhttp://dx.doi.org/10.1038/nature04520
000050688 909CO $$ooai:juser.fz-juelich.de:50688$$pVDB
000050688 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000050688 9141_ $$y2006
000050688 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050688 9201_ $$0I:(DE-Juel1)VDB58$$d31.12.2006$$gIBI$$kIBI-2$$lBiologische Strukturforschung$$x0
000050688 970__ $$aVDB:(DE-Juel1)79229
000050688 980__ $$aVDB
000050688 980__ $$aConvertedRecord
000050688 980__ $$ajournal
000050688 980__ $$aI:(DE-Juel1)ISB-2-20090406
000050688 980__ $$aUNRESTRICTED
000050688 980__ $$aI:(DE-Juel1)ICS-6-20110106
000050688 981__ $$aI:(DE-Juel1)IBI-7-20200312
000050688 981__ $$aI:(DE-Juel1)ISB-2-20090406
000050688 981__ $$aI:(DE-Juel1)ICS-6-20110106