000050723 001__ 50723
000050723 005__ 20230426083059.0
000050723 017__ $$aThis version is available at the following Publisher URL: http://prb.aps.org
000050723 0247_ $$2DOI$$a10.1103/PhysRevB.73.125402
000050723 0247_ $$2WOS$$aWOS:000236467400099
000050723 0247_ $$2Handle$$a2128/1434
000050723 037__ $$aPreJuSER-50723
000050723 041__ $$aeng
000050723 082__ $$a530
000050723 084__ $$2WoS$$aPhysics, Condensed Matter
000050723 1001_ $$0P:(DE-Juel1)VDB59923$$ada Silva, J. L. F.$$b0$$uFZJ
000050723 245__ $$aAll-electron first-principles investigations of the energetics of vicinal Cu surfaces
000050723 260__ $$aCollege Park, Md.$$bAPS$$c2006
000050723 300__ $$a125402
000050723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050723 3367_ $$2DataCite$$aOutput Types/Journal article
000050723 3367_ $$00$$2EndNote$$aJournal Article
000050723 3367_ $$2BibTeX$$aARTICLE
000050723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050723 3367_ $$2DRIVER$$aarticle
000050723 440_0 $$04919$$aPhysical Review B$$v73$$x1098-0121
000050723 500__ $$aRecord converted from VDB: 12.11.2012
000050723 520__ $$aUsing first-principles calculations we studied the energetics (surface energy, step energy, stability with respect to faceting) of the low- and high-Miller-index (vicinal) Cu surfaces, namely, the (111), (100), (110), (311), (331), (210), (211), (511), (221), (711), (320), (553), (410), (911), and (332) surfaces. Our calculations are based on density-functional theory employing the all-electron full-potential linearized augmented plane-wave (FLAPW) method. We found that the unrelaxed vicinal Cu surfaces between (100) and (111) are unstable relative to faceting at 0 K, while fully relaxed vicinal surfaces between (100) and (111) are stable relative to faceting, which is in agreement with the observed stability of vicinal Cu surfaces at room temperature. Thus atomic relaxations play an important role in the stability of the vicinal Cu surfaces. Using the surface energies of Cu(111), Cu(100), and Cu(110) and employing the effective pair-potential model, which takes into account only the changes in the coordination of the surface atoms, the surface energies of the vicinal Cu surfaces can be calculated with errors smaller than 1.0% compared with the calculated FLAPW surface energies. This result is due to the almost perfect linear scaling of the surface energies of the Cu(hkl) surfaces as a function of the total number of broken nearest-neighbor bonds. Furthermore, we calculate step-step interactions as a function of terrace widths and step energies of isolated steps.
000050723 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000050723 542__ $$2Crossref$$i2006-03-07$$uhttp://link.aps.org/licenses/aps-default-license
000050723 588__ $$aDataset connected to Web of Science
000050723 650_7 $$2WoSType$$aJ
000050723 7001_ $$0P:(DE-HGF)0$$aBarreteau, C.$$b1
000050723 7001_ $$0P:(DE-Juel1)VDB3933$$aSchroeder, K.$$b2$$uFZJ
000050723 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b3$$uFZJ
000050723 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.73.125402$$bAmerican Physical Society (APS)$$d2006-03-07$$n12$$p125402$$tPhysical Review B$$v73$$x1098-0121$$y2006
000050723 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.73.125402$$gVol. 73, p. 125402$$n12$$p125402$$q73<125402$$tPhysical review / B$$v73$$x1098-0121$$y2006
000050723 8567_ $$uhttp://hdl.handle.net/2128/1434$$uhttp://dx.doi.org/10.1103/PhysRevB.73.125402
000050723 8564_ $$uhttps://juser.fz-juelich.de/record/50723/files/79323.pdf$$yOpenAccess
000050723 8564_ $$uhttps://juser.fz-juelich.de/record/50723/files/79323.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000050723 8564_ $$uhttps://juser.fz-juelich.de/record/50723/files/79323.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000050723 8564_ $$uhttps://juser.fz-juelich.de/record/50723/files/79323.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000050723 909CO $$ooai:juser.fz-juelich.de:50723$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000050723 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000050723 9141_ $$y2006
000050723 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050723 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000050723 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x0
000050723 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x1
000050723 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000050723 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000050723 970__ $$aVDB:(DE-Juel1)79323
000050723 9801_ $$aFullTexts
000050723 980__ $$aVDB
000050723 980__ $$aJUWEL
000050723 980__ $$aConvertedRecord
000050723 980__ $$ajournal
000050723 980__ $$aI:(DE-Juel1)PGI-2-20110106
000050723 980__ $$aI:(DE-Juel1)PGI-1-20110106
000050723 980__ $$aI:(DE-82)080009_20140620
000050723 980__ $$aI:(DE-Juel1)VDB1045
000050723 980__ $$aUNRESTRICTED
000050723 980__ $$aFullTexts
000050723 981__ $$aI:(DE-Juel1)PGI-2-20110106
000050723 981__ $$aI:(DE-Juel1)PGI-1-20110106
000050723 981__ $$aI:(DE-Juel1)VDB1045
000050723 981__ $$aI:(DE-Juel1)VDB881
000050723 999C5 $$1M. C. Desjonquères$$2Crossref$$oM. C. Desjonquères Concepts in Surface Science 1995$$tConcepts in Surface Science$$y1995
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2003.11.027
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.5804
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(02)01554-6
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.245430
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2002-00232-4
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.075405
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(77)90442-3
000050723 999C5 $$1F. R. de Boer$$2Crossref$$oF. R. de Boer Cohesion in Metals 1988$$tCohesion in Metals$$y1988
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.67.3543
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.4816
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.46.7157
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(93)90556-Y
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.47.9751
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.4859
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.16845
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.4083
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.57.1881
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(98)00363-X
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.3500
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(99)00184-3
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.056104
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2002-00413-7
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(02)01547-9
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(02)01156-1
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/47/001
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.195416
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.136.B864
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000050723 999C5 $$1D. J. Singh$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-2312-0$$y1994
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.19.1706
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.13.5188
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/4/005
000050723 999C5 $$1C. Kittel$$2Crossref$$oC. Kittel Introduction to Solid State Physics 1996$$tIntroduction to Solid State Physics$$y1996
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(72)90011-8
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.245411
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.245432
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.033405
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/8/36/005
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0010-4655(90)90187-6
000050723 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.153409
000050723 999C5 $$1F. Ducastelle$$2Crossref$$9-- missing cx lookup --$$a10.1051/jphys:019700031011-120105500$$p1055 -$$tJ. Phys. (France)$$v31$$y1970