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Using first-principles calculations we studied the energetics �surface energy, step energy, stability with
respect to faceting� of the low- and high-Miller-index �vicinal� Cu surfaces, namely, the �111�, �100�, �110�,
�311�, �331�, �210�, �211�, �511�, �221�, �711�, �320�, �553�, �410�, �911�, and �332� surfaces. Our calculations
are based on density-functional theory employing the all-electron full-potential linearized augmented plane-
wave �FLAPW� method. We found that the unrelaxed vicinal Cu surfaces between �100� and �111� are unstable
relative to faceting at 0 K, while fully relaxed vicinal surfaces between �100� and �111� are stable relative to
faceting, which is in agreement with the observed stability of vicinal Cu surfaces at room temperature. Thus
atomic relaxations play an important role in the stability of the vicinal Cu surfaces. Using the surface energies
of Cu�111�, Cu�100�, and Cu�110� and employing the effective pair-potential model, which takes into account
only the changes in the coordination of the surface atoms, the surface energies of the vicinal Cu surfaces can
be calculated with errors smaller than 1.0% compared with the calculated FLAPW surface energies. This result
is due to the almost perfect linear scaling of the surface energies of the Cu�hkl� surfaces as a function of the
total number of broken nearest-neighbor bonds. Furthermore, we calculate step-step interactions as a function
of terrace widths and step energies of isolated steps.
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I. INTRODUCTION

The surface energy of a solid metal surface is an impor-
tant physical property which plays a role in determining the
equilibrium shape of crystals, stability of vicinal metal sur-
faces with respect faceting, etc. Hence it contributes to de-
termine the behavior of solid metal surfaces when used in
various technological applications such as catalysis, electro-
chemistry, corrosion, and lubrication.1 Direct experimental
measurements of the absolute value of the surface energy are
difficult to perform and are subject to various uncertainties,
e.g., presence of impurities. However, recent advances in ex-
perimental techniques have been made in the last years. Mé-
tois and Müller2 proposed a simple method to obtain the
absolute value of the surface energy of a given solid system,
which is based on two independent measurements on three-
dimensional �3D� and 2D equilibrium shapes completed by
the analysis of the thermal fluctuation of an isolated step.
Furthermore, Bonzel and Edmundts3 showed that analyzing
the 3D equilibrium crystal shapes of crystallites for a wide
range of temperatures by scanning tunneling microscopy
�STM� can yield absolute values of the surface and step en-
ergies versus temperature. This technique was applied for Pb
surfaces, namely, �111�, �100�, �110�, �311�, �112�, and
�221�.4,5 These experimental techniques can provide the ori-
entation dependence of the surface energy, as well as the
step-step interactions and kink energies.6,7 However, most of
the available experimental surface energy data were obtained
from surface tension measurements in the liquid phase and
extrapolated to zero temperature.1,8,9 Hence it cannot provide
the anisotropy of the surface energy.

Due to the difficulties in obtaining highly precise experi-
mental surface energies and the surface orientation depen-
dence, theoretical calculations have played a key role in cal-
culating the absolute value of the surface energy for different

orientations.11–27 For example, Methfessel et al.,11 employing
the full-potential linear muffin-tin orbital �FP-LMTO�
method, found a roughly parabolic behavior for the surface
energy of the low-Miller-index �flat� surfaces across the 4d
transition-metal series, which was explained in terms of the
d-band occupation. Almost at the same time, Skriver and
Rosengaard,12 employing a Green’s-function technique based
on the LMTO method, discussed the trends exhibited by the
surface energies of flat surfaces of the alkali, alkaline earth,
divalent rare-earth, 3d, 4d, and 5d transition and noble met-
als, as derived from the surface tension of liquid metals.
Furthermore, Vitos et al.,19 using a full-charge Green’s-
function LMTO approach, elaborated a useful database that
contains the surface energy for 60 flat metal surfaces in the
periodic table. Recently, Galanakis et al.,23,24 employing the
full-potential screened Korringa-Kohn-Rostoker �FKKR�
method, obtained in good approximation that the energy to
create a surface for the Cu, Ag, and Au metals depends only
on the number of broken nearest-neighbor bonds and not on
the cleavage plane, which is known as the broken-bond rule.

The studies mentioned above yielded a real improvement
in the understanding of the surface energy trends, however,
most of these studies were mainly restricted to the study of
flat surfaces, except the work performed by Galanakis and
co-workers,23,24 in which three unrelaxed vicinal surfaces
were calculated. The study of the energetics of high-Miller-
index �stepped, vicinal� surfaces is essential to the under-
standing of various surface properties such as the equilib-
rium shape of crystals, crystal growth, surface morphology,
step-step interactions, kink energies, stability with respect
faceting, etc.1 Recently, different theoretical approaches have
been used to study the stability of vicinal metal surfaces with
respect to faceting.20,22 Frenken and Stoltze,20 using the
effective-medium theory �EMT�, predicted that most vicinal
surfaces are unstable relative to faceting at 0 K and claimed
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that the observed stability at room temperature arises from
the entropic contributions due to thermal vibrations. How-
ever, Desjonquères et al.22 proved that for a wide class of
empirical potentials all vicinal surfaces between �100� and
�111� are unstable at 0 K, moreover, thermal vibrations do
not play a crucial role in the delicate energy balance which
drives the stability. Therefore a clear and simple explanation
for the observed stability of vicinal metal surfaces with re-
spect to faceting is still missing.

To obtain a clear understanding of the stability of the
vicinal Cu surfaces with respect to faceting at 0 K, which is
still missing in the literature, as well as to contribute to the
understanding of the surface energy trends with respect to
surface orientation, we performed systematic density-
functional theory �DFT� calculations employing the all-
electron full-potential linearized augmented plane-wave
�FLAPW� method for fifteen Cu surfaces: �111�, �100�,
�110�, �311�, �331�, �210�, �211�, �511�, �221�, �711�, �320�,
�553�, �410�, �911�, �332�. Furthermore, using our FLAPW
surface energies, we will discuss the accuracy of the effec-
tive pair-potential model to estimate the surface energy of
vicinal Cu surfaces, step energies of isolated steps, and sta-
bility of vicinal surfaces with respect faceting at 0 K.

The remainder of this paper is organized as follows: In
Sec. II, the theoretical approach will be described. In Sec. III,

the results are presented and discussed. Sec. IV summarizes
the main conclusions obtained in the present work. Some
technical details are discussed in the Appendix.

II. METHOD AND COMPUTATIONAL DETAILS

Our calculations are based on DFT,28,29 within the gener-
alized gradient approximation.30 The Kohn-Sham equations
are solved using the all-electron FLAPW method31 as imple-
mented in the FLEUR code,32 in which the solid surfaces are
modeled using the film geometry, i.e., a single slab is sand-
wiched between two semi-infinite vacua.33 The LAPWs
wave functions in the interstitial region are represented using
a plane-wave expansion truncated to include only plane
waves that have kinetic energies less than Kwf =18.06 Ry,34

and for the potential representation in the interstitial region,
plane waves up to Gpot=273 Ry are considered. Inside the
muffin-tin spheres with radius Rmt=1.16 Å, the wave func-
tions are expanded in radial functions times spherical har-
monics up to lmax=9, and for the potential a maximum of

l̃max=9 is also used. For the evaluation of the nonspherical
matrix elements of the Hamiltonian we include terms up to
lmax
ns =6.

Integrations over the surface Brillouin zone �BZ� were
performed using a two-dimensional Monkhorst-Pack35

TABLE I. Computational parameters used in the surface energy calculations of the low- and high-Miller-index Cu�hkl� surfaces. In the
terrace-step notation �p�h�k�l��� �uvw�� �h�k�l�� and �uvw� indicate the terrace and step orientations, while p indicates the number of atom

rows in the terrace. �a� � and �b� � are the dimensions of the �1�1� surface unit cell, while � is the angle between the vectors a� and b� . The area
of the �1�1� surface unit cell are indicated in the sixth column, while d0 is the interlayer spacing distance between two adjacent surface
layers parallel to the �hkl� surface. Nslab indicate the number of layers in the slab used to model the Cu�hkl� surface, while the slab thickness
is given by D= �Nl−1�d0. The last two columns indicate the two-dimensional Monkhorst-Pack k point grids and the respective number of k
points in the irreducible part of the surface BZ �IBZ�, respectively. The equilibrium theoretical Cu lattice constant is 3.63 Å.

Surface p�h�k�l��� �uvw� �a� � /a0 �b� � /a0 �
Area
�Å2�

d0

�Å� Nslab

D
�Å� k mesh Nk

IBZ

Cu�111� �2/2 �2/2 120° 5.704 a0 /�3=2.096 7 12.576 �20�20� 200

Cu�100� �2/2 �2/2 90° 6.587 a0 /�4=1.815 8 12.705 �20�20� 200

Cu�110� �2/2 1 90° 9.315 a0 /�8=1.283 11 12.830 �20�14� 140

Cu�311� 2�100�� �111� �2/2 �6/2 106.779° 10.923 a0 /�11=1.094 13 13.128 �20�12� 120

Cu�331� 3�111�� �111̄� �2/2 �10/2 102.921° 14.356 a0 /�19=0.833 17 13.328 �20�9� 90

Cu�210� 2�110�� �100� 1 �6/2 114.095° 14.729 a0 /�20=0.816 17 13.056 �14�11� 77

Cu�211� 3�111�� �100� �2/2 �12/2 90° 16.135 a0 /�24=0.741 19 13.338 �20�8� 80

Cu�511� 3�100�� �111� �2/2 �14/2 100.893° 17.113 a0 /�27=0.699 19 12.582 �20�8� 80

Cu�331� 4�111�� �111̄� �2/2 �18/2 90° 19.761 a0 /�36=0.605 23 13.310 �20�7� 70

Cu�711� 4�100�� �111� �2/2 �26/2 97.971° 23.520 a0 /�51=0.508 27 13.208 �20�6� 60

Cu�320� 3�110�� �100� 1 �14/2 105.501° 23.749 a0 /�52=0.503 27 13.078 �14�7� 49

Cu�331� 5�111�� �111̄� �2/2 �30/2 97.418° 25.298 a0 /�59=0.473 29 13.231 �20�5� 50

Cu�410� 4�100�� �110� 1 �18/2 103.633° 27.159 a0 /�68=0.440 31 13.200 �14�7� 49

Cu�911� 5�100�� �111� �2/2 �42/2 96.264° 30.005 a0 /�83=0.398 33 12.736 �20�4� 40

Cu�332� 6�111�� �111̄� �2/2 �44/2 90° 30.895 a0 /�88=0.387 35 13.155 �20�4� 40
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k mesh with the broadening of the Fermi surface by the
Fermi-Dirac distribution function �kBTele=54 meV�. The to-
tal energy was extrapolated to zero temperature.36 The k
meshes and the corresponding number of k points in the
surface BZ are summarized in Table I. The theoretical equi-
librium lattice constant �3.63 Å�, which is in good agreement
with experiment results,37 was used in our calculations.38 The
low- and high-Miller-index Cu surfaces are modeled using a
�1�1� surface unit cell, in which there is one Cu atom per
atomic layer. The most important geometric parameters of
the surface unit cells are summarized in Table I. Further-
more, the vicinal Cu surfaces are presented in Table I using
also the terrace-step notation.39 All layers in the slab were
allowed to relax and the equilibrium configuration is as-
sumed when the atomic force on each atom is smaller than
0.50 mRy/bohr. The multilayer relaxations of the studied Cu
surfaces, as well as further technical details, are discussed
elsewhere.40–42

III. RESULTS AND DISCUSSION

The surface energy Esurf is defined as the energy �per sur-
face atom or per unit area� needed to split an infinite crystal
into two semi-infinite crystals along some chosen plane.1 The
Cu surfaces are modeled using a single slab with a finite
number of layers, Nslab. Using this approach, Esurf is given by

Esurf =
1

2
�Etot

slab − NslabEtot
bulk� , �1�

where Etot
slab is the total energy of a slab with Nslab layers �one

atom per atomic layer�, while Etot
bulk is the reference bulk total

energy per atom. The factor 1 /2 takes into account that the
slab is bounded by two equivalent surfaces. Thus Esurf is a
function of the number of layers in the slab, and hence sur-
face energies calculated using Eq. �1� can be compared with
experimental surface energies obtained from semi-infinite
films only in the asymptotic regime �large values of Nslab�.
The central problem in calculating accurate surface energies
using first-principles calculations is to obtain a reliable value
for Etot

bulk. For example, an error of 10 meV in the reference
bulk total energy introduces an error of 0.165 eV �using
Nslab=33� in the surface energy of the Cu�911� surface.
Therefore surface energy calculations, as well as the physical
quantities derived from the surface energies such as step en-
ergies, relative stability, etc., require highly accurate bulk
and slab total-energy calculations.

In principle, the required total energies in Eq. �1� can be
calculated from two separated self-consistent calculations
�slab and bulk� using the same theoretical approach. How-
ever, FP-LMTO calculations found that the surface energy of
Pt�100� calculated from two separated self-consistent calcu-
lations decrease as a function of the number of layers in the
slab, which is an unphysical and unexpected result.43 This
problem was recently discussed by Da Silva38 employing the
FLAPW method44 and the repeated slab geometry. It was
found that the surface energy of Cu�111� calculated from two
separated self-consistent calculations and using Eq. �1� con-
verges as a function of the number of layers in the slab.
Unconverged calculations with respect to the number of k
points determines the divergent behavior of Esurf as a func-
tion of the number of layers in the slab. Da Silva38 pointed
out that similar high quality integrations over the surface and
bulk BZ are required to obtain converged surface energies,
which is only obtained by using high dense k-point meshes
in both calculations, e.g., �20�20� for Cu�111�. Further-
more, the slab and bulk systems need to be treated using
exactly the same basis function type and cutoff energies.

In the present work, the Cu surfaces are modeled using
the single slab geometry.33 Thus the semi-infinite vacua on
both sides of the single slab are described by plane waves
times exponential decay functions, which are not used in the
description of the bulk system. Hence the bulk and slab sys-
tems are not treated exactly with the same basis function
type. Thus the reference bulk total energy required in Eq. �1�
has to be obtained using a different approach. In the limit of
large values of Nslab, the reference bulk total energy can be
obtained by a linear fit of the slab total energies,43 which was
used in the present work to obtain Etot

bulk. Calculations were
performed for the unrelaxed �111�, �100�, �110�, and �311�
surfaces using different numbers of layers in the slab, from
which Etot

bulk was extracted by a linear fitting. The same ap-
proach was successfully used to study the dependence of the
surface energy of the flat Al surfaces as a function of the
number of layers in the slab.27

The surface energies of the unrelaxed and relaxed �111�,
�100�, �110�, �311� Cu surfaces as a function of Nslab are
summarized in Table II. We found that well converged sur-
face energies for �111�, �100�, �110�, �311� can be obtained
using 7 �1 meV�, 8 �2 meV�, 11 �0 meV�, and 13 �6 meV�
layers in the slab, respectively, which corresponds to slab
thickness of 12.58, 12.71, 12.83, and 13.13 Å, respectively.
The number in parentheses indicate the difference with re-
spect calculations using 11, 12, 15, and 17 layers for �111�,

TABLE II. Surface energy of Cu surfaces as a function of the number of layers in the slab, Nslab. Esurf
f and Esurf indicate the surface

energies per surface atom of unrelaxed and fully relaxed slabs, respectively.

Nslab

Esurf
f �111�
�eV�

Esurf�111�
�eV� Nslab

Esurf
f �100�
�eV�

Esurf�100�
�eV� Nslab

Esurf
f �110�
�eV�

Esurf�110�
�eV� Nslab

Esurf
f �311�
�eV�

Esurf�311�
�eV�

3 0.468 0.466 4 0.613 0.609 7 0.920 0.896 9 1.093 1.063

5 0.467 0.467 6 0.607 0.602 9 0.917 0.894 11 1.096 1.067

7 0.470 0.469 8 0.608 0.603 11 0.925 0.901 13 1.093 1.063

9 0.469 0.468 10 0.608 0.602 13 0.923 0.898 15 1.093 1.064

11 0.469 0.468 12 0.606 0.600 15 0.925 0.901 17 1.087 1.059
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�100�, �110�, and �311�, respectively. The small variation of
the surface energies of �111� and �100� with Nslab is due to
the small quantum-size effects present in these systems com-
pared with other systems, e.g., Al�111�.27 Based on the
present results, all surface energy calculations of the Cu sur-
faces were performed using a slab thickness of at least
12.50 Å. The exact number of layers used to model the
Cu�hlk� surfaces are summarized in Table I along with the
unrelaxed interlayer and registry distances. All surface en-
ergy results are summarized in Table III. Furthermore, the
energy gain due to the multilayer relaxations, the surface
energy per number of broken nearest-neighbor bonds, and
the anisotropy ratios are also summarized in Table III. The
few available experimental results and previous theoretical
results are summarized in Table IV.

Our results show that the multilayer relaxation decreases
the surface energy per surface atom by few percent, e.g.,
1.48% for Cu�332�. The energy gain due the multilayer re-
laxations ��Esurf=Esurf

f −Esurf� increases with increasing the
openness of the surfaces, e.g., �Esurf is larger for �410�,
�320�, and �210�, which are vicinal surfaces with Cu atoms
below the terrace exposed to the vacuum region.41

We want to point out the large discrepancies between our
results and particular theoretical calculations �see Table IV�.
Some of these discrepancies are due to the differences be-
tween the LDA and GGA functionals, however, in particular
cases, approximations in the potentials play a major role in
these discrepancies. For example, Da Silva38 employing the
FLAPW method, as implemented in the WIEN code,44 ob-
tained surface energies of 0.64 eV/atom and 0.50 eV/atom
employing the LDA and PBE functionals, respectively, for

�111�, i.e., a difference of only 0.14 eV/atom due to the LDA
and GGA functionals. The surface energy calculated for
�111� in the present work �0.47 eV/atom� differs only
0.03 eV/atom from the value obtained by Da Silva38 employ-
ing a different implementation of the FLAPW method and
employing the repeated slab geometry.

Our surfaces energies are close to the experimental results
reported in Refs. 8 and 9. However, it should be taken into
account that these results were obtained using measurements
in liquid phase and extrapolated to zero temperature, i.e., an
average value over a large number of orientations. However,
there are large differences between our results and those ex-
perimental results obtained by Bonzel and Nowicki5 for
�111� and �100�. It was pointed out in Ref. 5 that assuming a
higher vibrational entropy term to compute the step free en-
ergies at a temperature of 1240 K improves the agreement
with previously published data. The higher vibrational en-
tropy was justified by an increasing importance of anharmo-
nicity at high temperatures.

A. Broken-bond rule

Using our surface energies given in electron volt per
surface atom �see Table III�, we calculated the surface
energy anisotropy ratios �Esurf

� �hkl�=Esurf�hkl� /Esurf�111��.
Furthermore, for comparison, we calculated the broken
nearest-neighbor bonds anisotropy ratios �Nb

��hkl�
=Nb�hkl� /Nb�111��, where Nb�hkl� indicates the total num-
ber of broken nearest-neighbor bonds in the Cu�hkl� surface
taken into account all surface layers. For the studied Cu sur-
faces, Nb�hkl� is given by

TABLE III. Surface energy of low- and high-Miller-index Cu�hkl� surfaces. Esurf
f and Esurf indicate the surface energy per surface atom

of unrelaxed and fully relaxed slabs, respectively. �Esurf indicates the change in the surface energy due to the multilayer relaxations
��Esurf=Esurf

f −Esurf�. Esurf
�,f and Esurf

� indicates the surface energy anisotropy ratios �Esurf
� =Esurf�hkl� /Esurf�111�� calculated from the surface

energies given in electron volt per surface atom of unrelaxed and fully relaxed slabs, respectively. Nb indicates the total number of broken
nearest-neighbor bonds in the Cu�hkl� surface. Nb

� indicates the anisotropy ratios calculated from the total number of broken nearest-neighbor
bonds �Nb

��hkl�=Nb�hkl� /Nb�111��. The numbers in parentheses indicate the difference in percent of the surface energy anisotropy ratios with
respect to the Nb

� results.

Surface
Esurf

f

�eV�
Esurf

�eV�
�Esurf

�meV�
Esurf

f /Nb

�eV�
Esurf /Nb

�eV�
Esurf

f

�J /m2�
Esurf

�J /m2� Esurf
�,f Esurf

� Nb Nb
�

Cu�111� 0.470 0.469 0.97 0.157 0.156 1.320 1.317 3

Cu�100� 0.608 0.603 5.24 0.152 0.151 1.479 1.466 1.294 �−2.95% � 1.286 �−3.53% � 4 1.333

Cu�110� 0.925 0.901 23.67 0.154 0.150 1.591 1.550 1.969 �−1.55% � 1.922 �−3.90% � 6 2

Cu�311� 1.093 1.063 29.96 0.156 0.152 1.602 1.559 2.325 �−0.34% � 2.266 �−2.87% � 7 2.333

Cu�331� 1.398 1.364 34.03 0.155 0.152 1.560 1.522 2.974 �−0.87% � 2.908 �−3.07% � 9 3

Cu�210� 1.542 1.492 49.26 0.154 0.149 1.677 1.623 3.281 �−1.56% � 3.182 �−4.53% � 10 3.333

Cu�211� 1.559 1.524 35.09 0.156 0.152 1.548 1.513 3.319 �−0.42% � 3.251 �−2.46% � 10 3.333

Cu�511� 1.692 1.653 39.44 0.154 0.150 1.584 1.547 3.602 �−1.76% � 3.525 �−3.86% � 11 3.667

Cu�221� 1.864 1.828 35.22 0.155 0.152 1.511 1.482 3.966 �−0.85% � 3.899 �−2.53% � 12 4

Cu�711� 2.306 2.261 44.93 0.154 0.151 1.571 1.540 4.907 �−1.96% � 4.821 �−3.58% � 15 5

Cu�320� 2.458 2.388 70.22 0.154 0.149 1.658 1.611 5.232 �−1.89% � 5.093 �−4.50% � 16 5.333

Cu�553� 2.340 2.300 40.01 0.156 0.153 1.482 1.456 4.979 �−0.42% � 4.904 �−1.92% � 15 5

Cu�410� 2.755 2.688 67.03 0.153 0.149 1.625 1.585 5.862 �−2.30% � 5.731 �−4.48% � 18 6

Cu�911� 2.928 2.877 51.56 0.154 0.151 1.563 1.536 6.232 �−1.59% � 6.135 �−3.13% � 19 6.333

Cu�332� 2.806 2.765 41.03 0.156 0.154 1.455 1.434 5.971 �−0.48% � 5.896 �−1.73% � 18 6

DA SILVA et al. PHYSICAL REVIEW B 73, 125402 �2006�

125402-4



Nb�hkl� = � 2h + k h,k,l odd

4h + 2k otherwise
� h � k � l . �2�

The anisotropy ratios are summarized in Table III. To help in
the discussion, we plot the surface energy versus the number
of broken bonds in Fig. 1.

There is an excellent agreement between Esurf
�,f , Esurf

� , and
Nb

� for all studied Cu surfaces. The differences are smaller
than 3.0% �unrelaxed� and 5.0% �fully relaxed� for all stud-
ied Cu surfaces. The surface energies show an almost perfect
linear scaling as a function of the total number of broken
nearest-neighbor bonds for all studied Cu surfaces �see Fig.
1�. For example, the surface energy per number of broken
nearest-neighbor bonds is almost constant for all studied Cu
surfaces �see Table III�. Thus in a first approximation the
surface energy of a particular Cu surface can be estimated
using the surface energy of Cu�111� and the number of bro-
ken nearest-neighbor bonds. This trend is called the broken-
bond rule, which was also obtained by Galanakis and
co-workers23,24 using first-principles calculations for Cu, Ag,
and Au surfaces. We found that the broken-bond rule is
slightly better respected on a fixed lattice than when the
atomic positions are allowed to relax. This can be attributed
to the fact that in the relaxed system many different in-
equivalent bonds will appear corresponding to local changes
of the first neighbor Cu-Cu distances.40–42

The surface energy anisotropy ratios obtained by
Galanakis and co-workers23,24 are closer to the ideal values,

i.e., Nb
�, than our results. By investigating the behavior of the

anisotropy ratios as a function of the computational param-
eters, we found that the surface energy anisotropy ratios de-
pends on the cutoff energy and of the number of k points in
the irreducible part of the BZ. Relatively small cutoff ener-
gies, e.g., 10.56 Ry, provided anisotropy ratios closer to the

TABLE IV. Surface energies available in the literature for the low-Miller-index Cu surfaces.

Cu�111� Cu�100� Cu�110�

�eV� �J /m2� �eV� �J /m2� �eV� �J /m2�

FKKRa 0.675 0.874 1.327

FLAPWa 0.62 0.81 1.25

LMTOb 0.69 1.96 0.85 2.09 1.33 2.31

LMTOc 0.707 1.952 0.906 2.166 1.323 2.237

FLAPWd 0.64 1.92

FLAPWe 0.50 1.41

PPf 1.585 1.712 1.846

EAMg 1.181 1.288

TBh 0.581 0.748 1.121

Exp.i 1.790

Exp.j 1.825

Exp.k 4.0 5.5

aReference 23; LDA calculations.
bReference 12; LDA calculations.
cReference 21; GGA calculations.
dReference 38; LDA calculations.
eReference 38; PBE calculations.
fReference 13; pseudopotential LDA calculations.
gReference 14.
hReference 25.
iReference 8; experimental results.
jReference 9; experimental results.
kReference 5; experimental results.

FIG. 1. �Color online� Surface energy of low- and high-Miller-
index Cu surfaces versus the number of broken nearest-neighbor
bonds in the surface, Nb. Circles �in black� and squares �in red�
indicate surface energies of unrelaxed and fully relaxed surfaces,
respectively. The continuous lines are obtained from a linear fitting
of the surface energy DFT results.
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ideal values than higher cutoff energies, e.g., 18.06 Ry �used
in the present work�.

B. Effective pair potentials

To identify further trends in our surface energy data base,
we calculate the effective pair-potential �EPP� parameters us-
ing the model suggested by Vitos et al.,21 which relates the
EPP parameters with the surface energies and coordination
changes by the following equation:

Esurf�hkl� = 	
s=1

Ns

ns�hkl�Vs. �3�

In Eq. �3�, ns�hkl� is the number of broken pair bonds in the
sth coordination shell for a surface of index �hkl�, while Ns is
the number of coordination shells included in the expansion.
Vitos et al.21 suggested that three-body �and higher� interac-
tions is expected to play a role only for early transition met-
als, which is not the case of Cu, hence such interactions were
not included in the expansions. In the present work, we re-
stricted ourselves to the first three EPP parameters, i.e., V1,
V2, and V3, however, it should be pointed out that V4 or
higher EPP parameters cannot be determined using our sur-
face energy data base because the expansions for the studied
high-Miller-index surfaces are linear combinations of the ex-
pansions of the low-Miller-index surfaces �see the Appen-
dix�. The EPP model is based on a pair-potential expansion
of the energy on a fixed lattice, however, we have used the
same approach for the relaxed Cu surfaces. The effective
parameters V1, V2, V3 obtained from the relaxed flat surfaces
are taking into account the relaxation in an average manner.
The EPP parameters calculated using the surface energies of
�111�, �100�, and �110� reported in Table III are summarized
in Table V along with previously published results.

We found that V1
f and V1 are smaller than the average

surface energy of the low-Miller-index Cu surfaces per num-
ber broken nearest-neighbor bonds by 2.0% and 14.0%, re-

spectively. Furthermore, we obtained that V1
f /V2

f 
16,
V1

f /V3
f 
−163, V2

f /V3
f 
−10, while V1 /V2
12, V1 /V3
37,

V2 /V3
3. Thus we can conclude that the second and third
EPP parameters play a larger role for the relaxed surfaces
than for the unrelaxed surfaces, which is expected due to the
larger deviation of the broken bond rule for the fully relaxed
surfaces.

Using the EPP parameters reported in Table V and the
EPP expansions reported in the Appendix we calculated the
surface energy of the studied vicinal Cu surfaces. Hence the
accuracy of these results can be checked with our FLAPW
results reported in Table III. All surface energies calculated
using the EPP parameters are summarized in Table VI. Our
EPP surface energies for the unrelaxed �relaxed� high-Miller-
index Cu surfaces differ less than 1.0% �0.60%� compared to
the calculated surface energies. Hence we can conclude that
the EPP model can be used to obtain the surface energy of
different high-Miller-index surfaces with errors smaller than
1.0% compared with first-principles calculations assuming
that the surface energies of the low-Miller-index surfaces are
well converged with respect to the computational parameters.
Furthermore, the energy gain due to the multilayer relax-
ations calculated from the EPP surface energies, i.e., Esurf

EPP,f

−Esurf
EPP, differs from the FLAPW results by almost 20% at the

average.

C. Step energies

The step energy per unit step length of a vicinal surface
with a periodic succession of terraces with equal widths,
separated by steps of monoatomic height, can be calculated
using the following equation:46,25

Estep�p� = Esurf�p� − �p − 1 + f�Esurf��� , �4�

where Esurf�p� is the surface energy per surface atom of a
vicinal surface with orientation �hkl�. p characterizes the
number of atom rows �including the inner edge� parallel to
the step edge in the terrace, while f is a geometrical factor

TABLE V. Effective pair-potential �EPP� parameters calculated from the surface energies of the low-Miller-index Cu surfaces �see the
Appendix�. The EPP parameters are given in electron volts.

Method

Unrelaxed slabs Relaxed slabs

V1
f V2

f V3
f V1 V2 V3

FLAPWa +0.151 +0.009 −0.001 +0.131 +0.011 +0.004

FLAPWb +0.225 +0.008 −0.007

FKKRb +0.225 +0.012 −0.003

LMTOc +0.163 +0.018 +0.014

LMTOd +0.215 +0.035 −0.005

PPe +0.333 +0.024 −0.042

TBf +0.166 +0.013 +0.004

aPresent work; PBE calculations.
bReference 23; LDA calculations.
cReference 21; GGA calculations.
dReference 12; LDA calculations.
eReference 13; LDA calculations.
fReference 25.
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depending on the vicinal surface. The parameters p and f are
summarized in Tables I and VII, respectively. Esurf��� is the
surface energy per surface atom of the terrace surface, which
can be �111�, �100�, �110�. The value of the step energy for
an isolated step is then obtained in the limit of large values of
p. Consequently, the nature and order of magnitude of the
step-step interactions can be inferred from the study of
Estep�p� as a function of the values of p. In the present work,
the step energies were calculated for unrelaxed and fully re-
laxed slabs, which are indicated by Estep

f and Estep, respec-
tively.

For the particular case of the vicinal Cu�2p−1,11� sur-
faces, for which there are available experimental results,10

we calculated the step-step interactions for p=2, 3, 4, and 5
�different terrace widths�. The results are plotted in Fig. 2. As
expected the multilayer relaxations decreases the step ener-
gies but the step energies show the same trend as a function
of the number of atom-rows in the terrace for unrelaxed and
fully relaxed slabs. The minimum obtained for p=3 reveals a
relative attraction between the steps for short terraces, e.g.,
for p=3, 4 and p=5. This result is in agreement with scan-
ning tunneling microscope10 results, which found an attrac-

TABLE VI. Surface energy of Cu surfaces calculated using the EPP parameters. �Esurf
EPP indicates the energy gain due to the multilayer

relaxations, i.e., �Esurf
EPP=Esurf

EPP,f−Esurf
EPP. The numbers in parentheses indicate the relative error with respect to the FLAPW results in Table III.

Surface Esurf
EPP,f �eV� Esurf

EPP �eV� �Esurf
EPP �meV�

Cu�111� 0.470 �0.00%� 0.469 �0.00%� 0.97 �0.00%�
Cu�100� 0.608 �0.00%� 0.603 �0.00%� 5.24 �0.00%�
Cu�110� 0.925 �0.00%� 0.901 �0.00%� 23.67 �0.00%�
Cu�311� 1.082 �−0.99% � 1.058 �−0.46% � 23.99 �−19.91% �
Cu�331� 1.395 �−0.19% � 1.370 �+0.42% � 24.64 �−27.60% �
Cu�210� 1.537 �−0.29% � 1.490 �−0.13% � 46.70 �−5.20% �
Cu�211� 1.552 �−0.49% � 1.527 �+0.16% � 24.96 �−28.86% �
Cu�511� 1.690 �−0.15% � 1.661 �+0.47% � 29.23 �−25.88% �
Cu�221� 1.865 �+0.07% � 1.839 �+0.60% � 25.61 �−27.45% �
Cu�711� 2.298 �−0.33% � 2.264 �+0.12% � 34.47 �−23.28% �
Cu�320� 2.462 �+0.15% � 2.392 �+0.15% � 70.37 �+0.21% �
Cu�553� 2.335 �−0.20% � 2.308 �+0.38% � 26.57 �−33.58% �
Cu�410� 2.753 �−0.04% � 2.696 �+0.32% � 57.17 �−14.70% �
Cu�911� 2.906 �−0.75% � 2.867 �−0.35% � 39.71 �−22.99% �
Cu�332� 2.805 �−0.05% � 2.777 �+0.44% � 27.54 �−32.87% �

TABLE VII. Step energies of isolated steps given in electron volts per surface atom for various vicinal Cu geometries calculated from the
FLAPW surface energies �surfaces with the largest terraces� and the EPP parameters.

�p , p , p−2� �2p−1,11� �p−1,1 ,0� �2p−1,2p−1,1� �p , p−1,0� �2p−3,2p−1,1�

p�111�� �111̄� p�100�� �111� p�100�� �110� p�110�� �111� p�110�� �100� p�110�� �1̄11�
f =1/3 f =1/2 f =0 f =1/2 f =1/2 f =0

2V1+4V3 V1+2V2 2V1+2V2 V2+2V3 V1+2V3 V1+V2+2V3

FLAPWa 0.300 0.192 0.322 0.010 0.146

FLAPWb 0.264 0.164 0.276 0.012 0.134

EPPa 0.299 0.170 0.321 0.007 0.149 0.158

EPPb 0.276 0.153 0.284 0.018 0.138 0.149

LMTOc 0.380 0.200 0.363 0.046 0.190 0.209

TBd 0.348 0.192 0.358 0.021 0.174 0.187

FKKRe 0.438 0.249 0.474 0.006 0.219 0.231

PPf 0.497 0.382 0.715 −0.061 0.248 0.272

aPresent work using the FLAPW surface energies �EPP parameters� from unrelaxed slabs.
bPresent work using the FLAPW surface energies �EPP parameters� from fully relaxed slabs.
cReference 21 �unrelaxed slabs�.
dReference 25 and 26 �unrelaxed slabs�.
eReference 23.
fReference 13.
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tive interaction at intermediate terrace distances �p=4 and 5�.
Unfortunately one could not reach large enough terraces to
obtain a clear convergence of the step energy towards the
asymptotic value of an isolated step. One would probably
need to go up to p=8 or even p=9 which requires a very
large computer time. Interestingly one can note that the usual
repulsive elastic step-step interaction is buried in a dominant
Friedel like electronic interaction. An evaluation of the elas-
tic interaction can be obtained by writing the relaxed step
energy Estep as the sum of the unrelaxed step energy Estep

f

plus an extra negative term �relax�p� gained during the relax-
ation process �see Fig. 2�. This term itself depends on the
terrace width and its variation is of 6 meV between p=2 and
p=5 which is a very reasonable estimation of the strength for
the elastic interaction.

Using our FLAPW surface energies for the vicinal sur-
faces with the largest terrace widths, we calculated the step-
step interactions for different vicinal orientations. The results
are summarized in Table VII. For all studied cases,
except for p�110�� �111� vicinal, the multilayer relax-
ations decreases the step-step interaction. We found the

following trend: Estep
p�100���110��Estep

p�111���111��Estep
p�100���111�

�Estep
p�110���010��Estep

p�110���111�, which is agreement with previ-
ous theoretical results.25

Using the EPP model the energy of isolated steps can be
expressed as

Estep�p� = 	
s=1

Ns

nstep,s�p�Vs, �5�

where nstep,s=ns�p�− �p−1+ f�ns���.26 The numbers ns�p�
and ns��� are the total number of bonds in the sth coordina-
tion sphere broken by the vicinal and flat surfaces, respec-
tively. Due to the short range of the EPP parameters, nstep,s
becomes a constant as soon as p overcomes a value p�,
which is usually very small: most often, according to Vitos et
al.,21 p�=2. For example, the step energies for the Cu�2p
−1,11� surface calculated using Eq. �4� and the relations in
the Appendix do not depend on the number of atom rows in
the terrace, i.e., Estep�p�=V1+2V2 for p=2,3 ,4 ,5 , . . .. There-
fore differences of less than 1.0% between the calculated
surface energies and the EPP surfaces energies determines
the dependence of the step energies as a function of the ter-
race widths. Using Eq. �5�, we calculated the step-step en-
ergy interaction of isolated steps corresponding to stepped
surfaces with either �111�, �100�, or �110� terraces. The re-
sults are summarized in Table VII along with previous re-
sults.

Using our FLAPW surface energies we found stepped en-
ergies of 0.192 and 0.163 eV for the unrelaxed and relaxed
Cu�911� surfaces, respectively, which we assumed that can
be compared with the step energies of isolated steps calcu-
lated using the EPP model. Using the EPP parameters, we
obtained 0.170 eV and 0.153 eV, for the unrelaxed and fully
relaxed surfaces, respectively. Thus the EPP model provide
step energies smaller by 
11.0% �
6.0% � for the unrelaxed
�fully relaxed� slabs. For the vicinal p�111�� �111� surfaces
the results obtained using the FLAPW surface energies and
the EPP parameters differs by 0.35% and 4.5% for unrelaxed
and relaxed surfaces, respectively. In general, we can con-
clude that the step energies of isolated steps can be estimated
using the EPP parameters.

D. Stability of vicinal Cu surfaces at 0 K

Vicinal surfaces are not always stable. The surface energy
per unit area of a vicinal surface is large and it might be
energetically favorable for a solid to expose to the vacuum
region low-Miller-index facets which has smaller surface en-
ergies per area �see Table III�, even if the total surface area is
increased by the transformation. In the present work, we will
follow the approach suggested by Desjonquéres et al.,22

which is described in detail in Ref. 25, to study the stability
of the vicinal �100� and �111� Cu surfaces with respect to
faceting. According to the formulation proposed by Desjon-
quères and co-workers22,25 a vicinal surface of the �111�-
�100� domain is stable �unstable� with respect to faceting into
�100� and �111� facets, if �f�tan ���0 ��f�tan ���0�.
�f�tan �� is given by the following equation:

FIG. 2. �Color online� �a� Step energies per atom as function of
the number of atom rows in the terraces for the stepped Cu�2n
−1,11� surfaces. Circles �in black� and squares �in red� indicate
step energies obtained from unrelaxed and fully relaxed surfaces,
respectively. �b� Elastic energy calculated as Estep

f −Estep for differ-
ent surfaces. The straight lines are only a guide for the eyes.

DA SILVA et al. PHYSICAL REVIEW B 73, 125402 �2006�

125402-8



�f„tan���… = �Esurf�hkl� − �p − 1�Esurf�100�

− Esurf�111��/A0�hkl�, for p�100� � �111� and

�6�

�f„tan���… = �Esurf�hkl� − Esurf�100�

− �p − 1�Esurf�111��/A0�hkl�,

for p�111� � �100� . �7�

The surface energies in the equations above are in electron
volt per surface atom. � is the angle between the normals to
the vicinal �hkl� surfaces and the reference orientation �100�.
tan���=�2/ �2p−1� for p�100�� �111� and 4�2/ �3p−1� for
p�111�� �100�, where p is the number of atom-rows in the
terraces. A0�hkl�=A cos���, i.e., A0�hkl� is the area of the
projection of the surface unit cell area of the vicinal surface,
A, on the �100� plane. It can easily show that A0�hkl�
=cos�����2p−1�2+2a0

2 /4 for stepped p�100�� �111� sur-
faces and A0�hkl�=cos�����p+1�2+2�p−1�2a0

2 /4 for
p�111�� �100�.

As a first test, we calculated �f�tan �� for �311�. We
found for all test calculations using different number of lay-
ers in the slab for the �311�, �100�, and �111� surfaces that
�f�tan ���0 ��0� for unrelaxed �fully relaxed� slabs. Thus
our results are converged with respect to the number of lay-
ers in the slab. Using our FLAPW surface energies we cal-
culated the stability function, �f�tan ��, for the unrelaxed
and fully relaxed vicinal surfaces of the type p�100�
� �111� and p�111�� �100�, which is plotted in Fig. 3. Fur-
thermore, we calculated the stability function using also the
EPP surface energies.

We found that all unrelaxed �fully relaxed� vicinal Cu
surfaces of the type p�100�� �111� and p�111�� �100� are
unstable �stable�, i.e., �f�tan ���0 ��0�, with respect to
faceting into �100� and �111� facets at zero temperature. It
can be observed in Fig. 3 for the fully relaxed surfaces two

local minimum at the �511� and �211� surfaces, which should
lead to an unstable �311� surface. However, we want to point
out that the energy balance is so delicate that numerical er-
rors cannot be excluded. Apart from this questionable oscil-
lating feature, our results are in agreement with experimental
results, which observed that the vicinal surfaces are stable at
room temperature. Therefore our results clearly indicate that
the multilayer relaxations of the vicinal surfaces play an es-
sential role in the stability of the vicinal surfaces with respect
to faceting, which was not obtained in previous semi-
empirical studies. This finding is very interesting since it
shows that �100�-�111� vicinal Cu surfaces are at the verge of
�in�stability and are very sensitive to elastic interactions.
This may be explained by the tendency to develop facets
under deposition of adsorbates like silver atoms.45

Furthermore, the same conclusions with respect to the sta-
bility of the vicinal surfaces are obtained also using the EPP
surface energies. Thus our results suggest that the combina-
tion of high quality first-principles calculations for low-
Miller-index surfaces and the EPP model can provide a better
understanding of the stability of vicinal surfaces. However,
we cannot exclude that the good agreement between the EPP
and FLAPW results for the stability of the vicinal surfaces is
a fortuitous result and particular for Copper surfaces due to
the delicate balance between the surface energies of the dif-
ferent Cu surfaces.

IV. SUMMARY

In the present work we calculated the surface energy of
unrelaxed and fully relaxed low- and high-Miller-index Cu
surfaces employing the all-electron FLAPW method to solve
the Kohn-Sham equations. The following 15 Cu surfaces
were studied: �111�, �100�, �110�, �311�, �331�, �211�, �210�,
�511�, �221�, �320�, �711�, �553�, �410�, �911�, and �332�.

We found that the unrelaxed vicinal p�100�� �111� and
p�111�� �100� Cu surfaces are unstable relative to faceting
at 0 K, while the fully relaxed vicinal Cu surfaces are stable
relative to faceting, which is in agreement with the observed
stability of vicinal Cu surfaces at room temperature. There-
fore the multilayer relaxations of the vicinal Cu surfaces play
an important role in the stability of the mentioned surfaces
with respect to faceting.

Concerning the step-step interactions for the vicinal Cu
surfaces of the type p�100�� �111�, we obtained a minimum
for p=3, which reveals a relative attraction between the steps
for short terraces, e.g., for p=3, 4 and p=5. This result is in
agreement with STM �Ref. 10� results, which obtained an
attractive interaction at intermediate terrace distances �p=4
and 5�.

We obtained that the surface energies of the unrelaxed and
fully relaxed Cu surfaces studied in the present work can be
calculated using the EPP approach and the surface energies
of the unrelaxed and fully relaxed low-Miller-index Cu sur-
faces, respectively, with errors smaller than 1.0% compared
with the calculated FLAPW surface energies. This finding is
a consequence of the almost perfect linear scaling of the
surface energy of the Cu surfaces as a function of the total
number of broken nearest-neighbor bonds in the Cu�hkl� sur-

FIG. 3. �Color online� Stability function �f�	� with respect to
faceting into �100� and �111� facets at zero temperature for Cu
surfaces calculated from FLAPW and EPP surface energies. The
surface energies were calculated with and without relaxations of the
slab. The lines are only guide for the eyes.
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faces. Using the surface energies derived from the EPP
model, we found the same conclusion concerning the stabil-
ity of the vicinal p�100�� �111� and p�111�� �100� Cu sur-
faces surfaces with respect faceting at 0 K. Therefore we
conclude in the present work that high accurate first-
principles calculations for low-Miller-index surfaces com-
bined with the EPP model can provide insights in the ener-
getics of vicinal surfaces.

APPENDIX

Using the EPP expansions �Eq. �3�� within Ns=4 and the
number of broken pair bonds in the sth coordination shell for
the studied unrelaxed Cu�hkl� surfaces, we found the follow-
ing set of relations:

Esurf�111� = 3V1 + 3V2 + 12V3 + 6V4, �A1�

Esurf�100� = 4V1 + 2V2 + 16V3 + 8V4, �A2�

Esurf�110� = 6V1 + 4V2 + 20V3 + 12V4, �A3�

Esurf�311� = 7V1 + 5V2 + 24V3 + 14V4, �A4�

Esurf�331� = 9V1 + 7V2 + 32V3 + 18V4, �A5�

Esurf�210� = 10V1 + 6V2 + 32V3 + 20V4, �A6�

Esurf�211� = 10V1 + 8V2 + 36V3 + 20V4, �A7�

Esurf�511� = 11V1 + 7V2 + 40V3 + 22V4, �A8�

Esurf�221� = 12V1 + 10V2 + 44V3 + 24V4, �A9�

Esurf�711� = 15V1 + 9V2 + 56V3 + 30V4, �A10�

Esurf�320� = 16V1 + 10V2 + 52V3 + 32V4, �A11�

Esurf�553� = 15V1 + 13V2 + 56V3 + 30V4, �A12�

Esurf�410� = 18V1 + 10V2 + 64V3 + 36V4, �A13�

Esurf�911� = 19V1 + 11V2 + 72V3 + 38V4, �A14�

Esurf�332� = 18V1 + 16V2 + 68V3 + 36V4, �A15�

where the coefficients of V1, V2, V3, and V4 indicate the total
number of broken first-, second-, third-, and fourth-neighbor
bonds, respectively. It can be shown from the equations
above that the EPP expansions for the studied high-Miller-
index surfaces can be written as a linear combination of the
expansions of the low-Miller-index surfaces. Thus we cannot
determine the V4 parameter from our surface energy data
base. Therefore we restricted ourselves to the first three EPP
parameters, which can be determined using the surface
energy of the low-Miller-index surfaces. We set
V4 ,V5 ,V6 , . . .Vs=0. From the equations for the low-Miller-
index surfaces, we found the following relations:

V1 = Esurf�110� − Esurf�111� − Esurf�100�/2, �A16�

V2 = 2Esurf�111�/3 − Esurf�100�/2, �A17�

V3 = Esurf�111�/6 + Esurf�100�/4 − Esurf�110�/4. �A18�

The following set of EPP parameters were obtained: V1
f =

+0.151 163 eV, V2
f = +0.009 193 eV, and V3

f =
−0.000 929 eV for unrelaxed surfaces, while for fully re-
laxed surfaces we obtained V1= +0.131 079 eV, V2=
+0.011 167 eV, and V3= +0.003 518 eV. Thus using the
EPP parameters determined from the surface energy of the
low-Miller-index surfaces and the Eqs. �A4�–�A15�, we can
calculate the surface energies for all high-Miller-index Cu
surfaces and compare it with our FLAPW results. Thus er-
rors in the EPP model in obtaining surface energies of high-
Miller-index surfaces can be discussed in detail.
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