000005079 001__ 5079
000005079 005__ 20240610120027.0
000005079 0247_ $$2DOI$$a10.1103/PhysRevE.80.011901
000005079 0247_ $$2WOS$$aWOS:000268616300089
000005079 0247_ $$2Handle$$a2128/9327
000005079 037__ $$aPreJuSER-5079
000005079 041__ $$aeng
000005079 082__ $$a530
000005079 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000005079 084__ $$2WoS$$aPhysics, Mathematical
000005079 1001_ $$0P:(DE-Juel1)VDB69318$$aMesslinger, S.$$b0$$uFZJ
000005079 245__ $$aDynamical regimes and hydrodynamic lift of viscous vesicles under shear
000005079 260__ $$aCollege Park, Md.$$bAPS$$c2009
000005079 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2009-07-02
000005079 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2009-07-01
000005079 300__ $$a011901
000005079 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005079 3367_ $$2DataCite$$aOutput Types/Journal article
000005079 3367_ $$00$$2EndNote$$aJournal Article
000005079 3367_ $$2BibTeX$$aARTICLE
000005079 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005079 3367_ $$2DRIVER$$aarticle
000005079 440_0 $$04924$$aPhysical Review E$$v80$$x1539-3755$$y1
000005079 500__ $$aRecord converted from VDB: 12.11.2012
000005079 520__ $$aThe dynamics of two-dimensional viscous vesicles in shear flow, with different fluid viscosities eta(in) in and eta(out) inside and outside, respectively, is studied using mesoscale simulation techniques. Besides the well-known tank-treading and tumbling motions, an oscillatory swinging motion is observed in the simulations for large shear rate. The existence of this swinging motion requires the excitation of higher-order undulation modes (beyond elliptical deformations) in two dimensions. Keller-Skalak theory is extended to deformable two-dimensional vesicles, such that a dynamical phase diagram can be predicted for the reduced shear rate and the viscosity contrast eta(in)/eta(out). The simulation results are found to be in good agreement with the theoretical predictions, when thermal fluctuations are incorporated in the theory. Moreover, the hydrodynamic lift force, acting on vesicles under shear close to a wall, is determined from simulations for various viscosity contrasts. For comparison, the lift force is calculated numerically in the absence of thermal fluctuations using the boundary-integral method for equal inside and outside viscosities. Both methods show that the dependence of the lift force on the distance y(cm) of the vesicle center of mass from the wall is well described by an effective power law y(cm)(-2) for intermediate distances 0.8R(p) less than or similar to y(cm) less than or similar to 3R(p) with vesicle radius R-p. The boundary-integral calculation indicates that the lift force decays asymptotically as 1/[y(cm) 1n(y(cm))] far from the wall.
000005079 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000005079 542__ $$2Crossref$$i2009-07-02$$uhttp://link.aps.org/licenses/aps-default-license
000005079 588__ $$aDataset connected to Web of Science
000005079 650_7 $$2WoSType$$aJ
000005079 7001_ $$0P:(DE-Juel1)VDB18637$$aSchmidt, B.$$b1$$uFZJ
000005079 7001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b2$$uFZJ
000005079 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b3$$uFZJ
000005079 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.80.011901$$bAmerican Physical Society (APS)$$d2009-07-02$$n1$$p011901$$tPhysical Review E$$v80$$x1539-3755$$y2009
000005079 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.80.011901$$gVol. 80, p. 011901$$n1$$p011901$$q80<011901$$tPhysical review / E$$v80$$x1539-3755$$y2009
000005079 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.80.011901
000005079 8564_ $$uhttps://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.pdf$$yOpenAccess
000005079 8564_ $$uhttps://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.gif?subformat=icon$$xicon$$yOpenAccess
000005079 8564_ $$uhttps://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000005079 8564_ $$uhttps://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000005079 8564_ $$uhttps://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000005079 909CO $$ooai:juser.fz-juelich.de:5079$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000005079 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000005079 9141_ $$y2009
000005079 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005079 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000005079 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000005079 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000005079 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000005079 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000005079 970__ $$aVDB:(DE-Juel1)112484
000005079 9801_ $$aFullTexts
000005079 980__ $$aVDB
000005079 980__ $$aConvertedRecord
000005079 980__ $$ajournal
000005079 980__ $$aI:(DE-Juel1)ICS-2-20110106
000005079 980__ $$aI:(DE-Juel1)IAS-2-20090406
000005079 980__ $$aI:(DE-82)080012_20140620
000005079 980__ $$aUNRESTRICTED
000005079 981__ $$aI:(DE-Juel1)IBI-5-20200312
000005079 981__ $$aI:(DE-Juel1)IAS-2-20090406
000005079 981__ $$aI:(DE-Juel1)ICS-2-20110106
000005079 981__ $$aI:(DE-Juel1)IAS-2-20090406
000005079 981__ $$aI:(DE-Juel1)VDB1346
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018739700101488
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112082002651
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3685
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.69.011906
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.258102
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.72.011901
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.78.041007
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112001004657
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.7132
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.258101
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.036001
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epje/i2005-10058-x
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.028104
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.75.016313
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.128103
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.041905
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.218101
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/4/043044
000005079 999C5 $$1Y. C. Fung$$2Crossref$$9-- missing cx lookup --$$a10.1007/978-1-4757-2696-1$$y1997
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1055/s-2007-979112
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.200240897
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1083/jcb.200303134
000005079 999C5 $$1J. L. M. Poiseuille$$2Crossref$$oJ. L. M. Poiseuille 1836$$y1836
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/jp2:1997201
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/30/1/022
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.880
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.83.876
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.64.011916
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2000-00517-6
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.068103
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1529/biophysj.104.056036
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/83/24002
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epje/i2007-10299-7
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.478857
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/9780470371572.ch2
000005079 999C5 $$1G. Gompper$$2Crossref$$oG. Gompper 2009$$y2009
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/78/10005
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.78.016706
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.76.046705
000005079 999C5 $$1C. Pozrikidis$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9780511624124$$y1992
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.178102
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.028103
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112093001582
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.869702
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.188302
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.078301
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S0022112008001493
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.75.066301
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1017/S002211200600156X
000005079 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rspa.1922.0078