Home > Publications database > Dynamical regimes and hydrodynamic lift of viscous vesicles under shear > print |
001 | 5079 | ||
005 | 20240610120027.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevE.80.011901 |2 DOI |
024 | 7 | _ | |a WOS:000268616300089 |2 WOS |
024 | 7 | _ | |a 2128/9327 |2 Handle |
037 | _ | _ | |a PreJuSER-5079 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Fluids & Plasmas |
084 | _ | _ | |2 WoS |a Physics, Mathematical |
100 | 1 | _ | |a Messlinger, S. |b 0 |u FZJ |0 P:(DE-Juel1)VDB69318 |
245 | _ | _ | |a Dynamical regimes and hydrodynamic lift of viscous vesicles under shear |
260 | _ | _ | |a College Park, Md. |b APS |c 2009 |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2009-07-02 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2009-07-01 |
300 | _ | _ | |a 011901 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Physical Review E |x 1539-3755 |0 4924 |y 1 |v 80 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a The dynamics of two-dimensional viscous vesicles in shear flow, with different fluid viscosities eta(in) in and eta(out) inside and outside, respectively, is studied using mesoscale simulation techniques. Besides the well-known tank-treading and tumbling motions, an oscillatory swinging motion is observed in the simulations for large shear rate. The existence of this swinging motion requires the excitation of higher-order undulation modes (beyond elliptical deformations) in two dimensions. Keller-Skalak theory is extended to deformable two-dimensional vesicles, such that a dynamical phase diagram can be predicted for the reduced shear rate and the viscosity contrast eta(in)/eta(out). The simulation results are found to be in good agreement with the theoretical predictions, when thermal fluctuations are incorporated in the theory. Moreover, the hydrodynamic lift force, acting on vesicles under shear close to a wall, is determined from simulations for various viscosity contrasts. For comparison, the lift force is calculated numerically in the absence of thermal fluctuations using the boundary-integral method for equal inside and outside viscosities. Both methods show that the dependence of the lift force on the distance y(cm) of the vesicle center of mass from the wall is well described by an effective power law y(cm)(-2) for intermediate distances 0.8R(p) less than or similar to y(cm) less than or similar to 3R(p) with vesicle radius R-p. The boundary-integral calculation indicates that the lift force decays asymptotically as 1/[y(cm) 1n(y(cm))] far from the wall. |
536 | _ | _ | |a Kondensierte Materie |c P54 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK414 |x 0 |
542 | _ | _ | |i 2009-07-02 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |a J |2 WoSType |
700 | 1 | _ | |a Schmidt, B. |b 1 |u FZJ |0 P:(DE-Juel1)VDB18637 |
700 | 1 | _ | |a Noguchi, H. |b 2 |u FZJ |0 P:(DE-Juel1)VDB37578 |
700 | 1 | _ | |a Gompper, G. |b 3 |u FZJ |0 P:(DE-Juel1)130665 |
773 | 1 | 8 | |a 10.1103/physreve.80.011901 |b American Physical Society (APS) |d 2009-07-02 |n 1 |p 011901 |3 journal-article |2 Crossref |t Physical Review E |v 80 |y 2009 |x 1539-3755 |
773 | _ | _ | |a 10.1103/PhysRevE.80.011901 |g Vol. 80, p. 011901 |p 011901 |n 1 |q 80<011901 |0 PERI:(DE-600)2844562-4 |t Physical review / E |v 80 |y 2009 |x 1539-3755 |
856 | 7 | _ | |u http://dx.doi.org/10.1103/PhysRevE.80.011901 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.gif?subformat=icon |x icon |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/5079/files/PhysRevE.80.011901.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:5079 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
913 | 1 | _ | |k P54 |v Kondensierte Materie |l Kondensierte Materie |b Materie |z entfällt bis 2009 |0 G:(DE-Juel1)FUEK414 |x 0 |
914 | 1 | _ | |y 2009 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
920 | 1 | _ | |d 31.12.2010 |g IFF |k IFF-2 |l Theorie der Weichen Materie und Biophysik |0 I:(DE-Juel1)VDB782 |x 0 |
920 | 1 | _ | |g IAS |k IAS-2 |l Theorie der Weichen Materie und Biophysik |0 I:(DE-Juel1)IAS-2-20090406 |x 1 |z IFF-2 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l Jülich Aachen Research Alliance - High-Performance Computing |g JARA |x 2 |
970 | _ | _ | |a VDB:(DE-Juel1)112484 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
981 | _ | _ | |a I:(DE-Juel1)VDB1346 |
999 | C | 5 | |a 10.1080/00018739700101488 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S0022112082002651 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.77.3685 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.69.011906 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.93.258102 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.72.011901 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1143/JPSJ.78.041007 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S0022112001004657 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.56.7132 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.95.258101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.96.036001 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epje/i2005-10058-x |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.96.028104 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.75.016313 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.98.128103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.76.041905 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.99.218101 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1367-2630/10/4/043044 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/978-1-4757-2696-1 |1 Y. C. Fung |2 Crossref |9 -- missing cx lookup -- |y 1997 |
999 | C | 5 | |a 10.1055/s-2007-979112 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1073/pnas.200240897 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1083/jcb.200303134 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 J. L. M. Poiseuille |y 1836 |2 Crossref |o J. L. M. Poiseuille 1836 |
999 | C | 5 | |a 10.1051/jp2:1997201 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/0305-4470/30/1/022 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.83.880 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.83.876 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.64.011916 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1209/epl/i2000-00517-6 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.88.068103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1529/biophysj.104.056036 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1209/0295-5075/83/24002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1140/epje/i2007-10299-7 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.478857 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1002/9780470371572.ch2 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |1 G. Gompper |y 2009 |2 Crossref |o G. Gompper 2009 |
999 | C | 5 | |a 10.1209/0295-5075/78/10005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.78.016706 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.76.046705 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/CBO9780511624124 |1 C. Pozrikidis |2 Crossref |9 -- missing cx lookup -- |y 1992 |
999 | C | 5 | |a 10.1103/PhysRevLett.99.178102 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.100.028103 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S0022112093001582 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.869702 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.98.188302 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.98.078301 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S0022112008001493 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevE.75.066301 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1017/S002211200600156X |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1098/rspa.1922.0078 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|