000000508 001__ 508
000000508 005__ 20240619083250.0
000000508 0247_ $$2pmid$$apmid:19044852
000000508 0247_ $$2DOI$$a10.1063/1.2951987
000000508 0247_ $$2WOS$$aWOS:000259008900044
000000508 0247_ $$2Handle$$a2128/4643
000000508 037__ $$aPreJuSER-508
000000508 041__ $$aeng
000000508 082__ $$a540
000000508 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000000508 1001_ $$0P:(DE-Juel1)VDB71338$$aGögelein, C.$$b0$$uFZJ
000000508 245__ $$aA simple patchy colloid model for the phase behavior of lysozyme dispersions
000000508 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2008
000000508 300__ $$a085102
000000508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000000508 3367_ $$2DataCite$$aOutput Types/Journal article
000000508 3367_ $$00$$2EndNote$$aJournal Article
000000508 3367_ $$2BibTeX$$aARTICLE
000000508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000000508 3367_ $$2DRIVER$$aarticle
000000508 440_0 $$03145$$aJournal of Chemical Physics$$v129$$x0021-9606
000000508 500__ $$aThis project has been partly supported by the European Commission under the 6<SUP>th</SUP> Framework Program through integrating and strengthening the European Research Area. Contract No. SoftComp, NoE/NMP3-CT-2004-502235.
000000508 520__ $$aWe propose a minimal model for spherical proteins with aeolotopic pair interactions to describe the equilibrium phase behavior of lysozyme. The repulsive screened Coulomb interactions between the particles are taken into account assuming that the net charges are smeared out homogeneously over the spherical protein surfaces. We incorporate attractive surface patches, with the interactions between patches on different spheres modeled by an attractive Yukawa potential. The parameters entering the attractive Yukawa potential part are determined using information on the experimentally accessed gas-liquid-like critical point. The Helmholtz free energy of the fluid and solid phases is calculated using second-order thermodynamic perturbation theory. Our predictions for the solubility curve are in fair agreement with experimental data. In addition, we present new experimental data for the gas-liquid coexistence curves at various salt concentrations and compare these with our model calculations. In agreement with earlier findings, we observe that the strength and the range of the attractive potential part only weakly depend on the salt content.
000000508 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000000508 588__ $$aDataset connected to Web of Science, Pubmed
000000508 650_2 $$2MeSH$$aAlgorithms
000000508 650_2 $$2MeSH$$aAnimals
000000508 650_2 $$2MeSH$$aBiophysics: methods
000000508 650_2 $$2MeSH$$aChemistry, Physical: methods
000000508 650_2 $$2MeSH$$aChickens
000000508 650_2 $$2MeSH$$aColloids: chemistry
000000508 650_2 $$2MeSH$$aEgg Proteins: chemistry
000000508 650_2 $$2MeSH$$aHydrogen-Ion Concentration
000000508 650_2 $$2MeSH$$aModels, Statistical
000000508 650_2 $$2MeSH$$aModels, Theoretical
000000508 650_2 $$2MeSH$$aMuramidase: chemistry
000000508 650_2 $$2MeSH$$aSolubility
000000508 650_2 $$2MeSH$$aSolvents: chemistry
000000508 650_2 $$2MeSH$$aTemperature
000000508 650_2 $$2MeSH$$aThermodynamics
000000508 650_7 $$00$$2NLM Chemicals$$aColloids
000000508 650_7 $$00$$2NLM Chemicals$$aEgg Proteins
000000508 650_7 $$00$$2NLM Chemicals$$aSolvents
000000508 650_7 $$0EC 3.2.1.17$$2NLM Chemicals$$aMuramidase
000000508 650_7 $$2WoSType$$aJ
000000508 7001_ $$0P:(DE-Juel1)130858$$aNägele, G.$$b1$$uFZJ
000000508 7001_ $$0P:(DE-Juel1)VDB10252$$aTuinier, R.$$b2$$uFZJ
000000508 7001_ $$0P:(DE-HGF)0$$aGibaud, T.$$b3
000000508 7001_ $$0P:(DE-HGF)0$$aStradner, A.$$b4
000000508 7001_ $$0P:(DE-HGF)0$$aSchurtenberger, P.$$b5
000000508 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.2951987$$gVol. 129, p. 085102$$p085102$$q129<085102$$tThe @journal of chemical physics$$v129$$x0021-9606$$y2008
000000508 8567_ $$uhttp://dx.doi.org/10.1063/1.2951987
000000508 8564_ $$uhttps://juser.fz-juelich.de/record/508/files/4643.pdf$$yOpenAccess
000000508 8564_ $$uhttps://juser.fz-juelich.de/record/508/files/4643.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000000508 8564_ $$uhttps://juser.fz-juelich.de/record/508/files/4643.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000000508 8564_ $$uhttps://juser.fz-juelich.de/record/508/files/4643.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000000508 909CO $$ooai:juser.fz-juelich.de:508$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000000508 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000000508 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000000508 9141_ $$y2008
000000508 9131_ $$0G:(DE-Juel1)FUEK414$$aDE-HGF$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000000508 9201_ $$0I:(DE-Juel1)VDB787$$d31.12.2010$$gIFF$$kIFF-7$$lWeiche Materie$$x0
000000508 970__ $$aVDB:(DE-Juel1)101062
000000508 9801_ $$aFullTexts
000000508 980__ $$aVDB
000000508 980__ $$aConvertedRecord
000000508 980__ $$ajournal
000000508 980__ $$aI:(DE-Juel1)ICS-3-20110106
000000508 980__ $$aUNRESTRICTED
000000508 980__ $$aJUWEL
000000508 980__ $$aFullTexts
000000508 981__ $$aI:(DE-Juel1)ICS-3-20110106