John von Neumann Institute for Computing Nlc

Basis Sets, Accuracy,
and Calibration in Quantum Chemistry

Thomas Miller

published in

Computational Nanoscience: Do It Yourself!,

J. Grotendorst, S. Blugel, D. Marx (Eds.),

John von Neumann Institute for Computing, Julich,

NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 19-43, 2006.

© 2006 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume31






Basis Sets, Accuracy,
and Calibration in Quantum Chemistry

Thomas Miller

John von Neumann Institute for Computing
Central Institute for Applied Mathematics
Forschungszentrum Jillich
52425 Julich, Germany
E-mail: th.mueller@fz-juelich.de

This lecture primarily deals with aspects of quantum cheirab initio cluster codes without
periodic boundary conditions. The most important pararsetehich any user of quantum
chemical program packages must select when setting up &eprab the choice of the model
Hamiltonian and the one-electron and N-electron basisAgthere is no general fool-proof
recipe available that covers the general case, we apprbagiroblem by discussing the most
relevant approximations and their implications. The aintoiprovide the reader with a basic
idea of the various approximations and to what extent resuitl conclusions maybe affected.
Finally it is anticipated that most readers will not carnt quantum chemical calculations for
their own sake but rather use them as a tool to extract dat@ tordcessed further for the
investigation of the problem in question. Here, selectingppropriate theoretical method and
being aware of their potential shortcomings is even moreoitat as not to jump to entirely
false conclusions. Following a short review of the basic el@dnd approximations, the major
errors are discussed in some detail. Extrapolation andratitbn methods are presented and
illustrative case studies are discussed.

1 Introduction

Although the general aim is to strive for (highly) accuratdusions of the many-body
Schrodinger equation this is possible only for the smadigstems because the resource re-
guirementsin terms of computer time, memory and disk spaxrease rather unfavourably
with the size of the system. However, in many cases there ieerd to carry out calcula-
tions at high accuracy since experimental problems agsabreth larger systems limit the
resolution and correspondingly theoretical treatmenbufer accuracy may be perfectly
sufficient. Frequently, even semiquantitative answeraHihat is needed and occasion-
ally apparently simple problems are hard to solve accunadeigh. Thus the notion of
accuracy depends upon the specific problem in question.

A central aspect of quantum chemistry is the explicit or iigiptietermination of state-
specific potential energy surfaces (PES), predicting gédesespectra and chemical reac-
tions. As these properties solely depend upedative energies accurate calculations need
to reproduce the shape of the exact PES. In fact most quartftemical models are not
generally applicable to arbitrary sections of the PES. extigs, which primarily sample
regions of the electron density of little importance for #rergy require some care. The
requirements for their calculation may be drasticallyatiént from those for the energy.
Hyperpolarizabilities, which determine various nonlineatical effects, for example de-
pend on the outer charge density distribution and are gaitgiive to dynamic electron
correlation effects.



Being aware about the conceptual limitations of methodstarahticipate the appli-
cability of a given approach is essential. It is advisablpittge the accuracy of quantum
chemical calculations not simply by comparison to expenimeExperimental data fre-
guently cannot be compared to quantum chemical resultoutitturther corrections for
effects not included in the (quantum chemical) model Hamikn and the processing of
the experimental raw data itself relies frequently on agsgtions, which may or may not
hold accurately enough. This might render an interpretatifothe deviation impossible.
It is quite tempting to adjust the various parameters of antjra chemical calculation
such that the results finally agree with the available expenital data one has set out to
reproduce or to explain. This is - apart from possibly legdim entirely wrong conclu-
sions - entirely useless, since it prevents us from anaiytsia result and thereby attaining
a better understanding of the underlying problem beyoneipeenerating a collection of
numbers.

The preferred approach is to assess the quality of a caloulatthin the theoretical
approach. Comparison with experimental data follows as#oend step. Constructing
series of calculations in order to detect or to eliminatesfjde sources of error as well
as using series of calculations of increasing accuracydialsly chosen reference sys-
tems to calibrate the methods whenever necessary. Fieathgpolation techniques may
prove helpful in order to overcome practical limitations@dated with the wave function
expansion.

2 Basic Approximations

2.1 Hamiltonian

The standard molecular Hamiltonian used in electronicctine calculations in atomic
units contains the electronic kinetic energy electron-electron repulsiov.., electron-
nuclei attractiorV,,. and the nuclear-nuclear repulsion enevgy, and runs
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Z denotes the nuclear charge,andr are nuclear and electronic position vectors, re-
spectively. Summations run over all electrons (indg® and nuclei (index4, B). This
equation implies several simplifications: (i) the partidlieteract non-relativistically solely
through Coulombic interaction (i) the (clamped-nucleBsjn-Oppenheimer Approxima-
tion and (iii) the particles are described as point chargegacting the finite size of the
nuclei.

Relativistic contributions to the total energy, which gcatZ*/c? with ¢ the speed of
light (=~ 137 a.u.), must be included for the heavier elements in at |@ssesapproximate
manner. The impact of spin-orbit coupling may be of simifaportance as electron corre-
lation for the heavier elements and cannot be straightfathyggnored (cf. Section 3.6).



The Born-Oppenheimer approximatfofy sometimes referred to asliabatic approx-
imatior?, decouples electron motion from the motion of the nucleidtks well wherever
the gradient of the electronic wave function with respeth&nuclear coordinates is small.
This assumption may be violated close to avoided crossietygden different electronic
states, where the characteristics of the participatingsteapidly change. Proper treat-
ment of these regions, which are of great importance for tiderstanding of the dynam-
ics of photochemical reactions, invariably require théusion ofnon-adiabaticcoupling
termg.

2.2 Wave Function Expansion

The eigenvalues and eigenfunctions of the time-indeparighrodinger equation
HT = ET (4)

are sought. As analytical solutions are unavailable extmpthe one-electron case an
expansion in an N-particle basis @t} offers a solution. For an initial trial wave function
¥ (a), which depends on a set of parametge$ the energy functional runs

Bla) = (E@HIF@)
(T ()% ()
By virtue of the variation theorem the approximatiE(\a) is an upper bound to the exact

energy of Eq. (4) and the wave functi@{e) will converge on average to the exact wave
function . Using a linear expansion ia and making the energy stationary

(5)
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with respect tax yields a generalized eigenvalue problem

Hec = ESc (7

H;; = (®:|H[®;) (8)

Sij = (2i|®;) )

H;; andS;; denote the hamiltonian and overlap matrix elements withbeesto the N-
particle basis function§; and®;. The Dirac notation implieé®;|0|®;) = [ ®rO®;dr.
As the basis may be chosen orthonormal, the overlap matrgpilaced by the unit matrix.
A complete N-particle basis set yields the exact solutioB@f(4). However, such a basis
would be infinite in size and rather impractical to use.

Guidelines for the construction of the N-particle basistheeefficient representation
of the N-particle space and the rapid evaluation of the m&g8mematrix elements, i.e.
the computation of a vast number of multi-dimensional Ne&ten integrals appearing in
Eq. (8). Conventionally, the N-electron basis is constddétom antisymmetrized products
of orthonormal spinorbitalgy; (r;), denoted Slater determinaris

N
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The spinorbitals are a product of a spatial gasi(r;) times a spin pard; (w;). The spatial
partis expanded in linear combinations of atom-centerededactron basis functiong, .
The favourable mathematical properties of Gaussian Typ®t&ds (GTOs) for integral
evaluation make them the preferred choicexg(r).

¢i = 0i Y _ Cpixu(rs) = oiwdi(r) (11)
I

Xu(r) — mluymuz”ue_aurz (12)

The major challenge is the evaluation of the two-electraegrals over GTOs (Eq. (13))
that finally occur as the basic building blocks of the mattenegents(®;|#|®;). (..|..) and
[..]-.] indicate integrals over spatial orbitals and spinorbjtaspectively.
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(ig|kl) = (jilkl) = (ij|tk) = (jiltk) = (kl|ij) = (Ik|ij) = (Kl|ji) = (klgi) ~ (17)
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Figure 1. Schematic construction of closed-shell grouates@®o), singly (@¢), doubly (<I>“”) triply (@“bc)
and quadruplyf(?‘;",gld) excited determinants.

Figure 1 schematically depicts the construction of the Kigle basis set. The molec-
ular orbital (MO) coefficients,,; are usually obtained from Hartree-Fock (HF) or multi-
configurational self-consistent field (MCSCF) calculatioiWhereas in the HF method
¥ (a) is expanded in a single Slater determinant the MCSCF metkpahels? (a) into a
small expansion of usually less than 50000 terms (cf. E{. (Beither casall parameters



{a} andC\; are fully optimized. The MO$; are ordered according to their eigenvalues
(orbital energies;). The ground (or reference) state is constructed by fillmegyenerget-
ically lowest-lying orbitals with two electrons each (cdakshell case). Singly, doubly,
triply and quadruply excited determinants are obtaineddxgiting” electrons from some
occupied to unoccupied orbitals. Continuing up to N-fol¢itations generates the full
N-particle basis. Slater determinants are in general nenignctions toS?. However,
spin-adapted configurations (CSFs) may be constructedWiygtdhe appropriate linear
combinations of Slater determinants.

The number of CSFs that can be constructed fromolecular orbitals an@/ electrons
subject to a spin-multiplicity of = b/2 is given by:

b+1/n+1 n+1
Nogp = —— hereN = 2 =b/2 18
7 n+1< a )(n—a—b) where a+bS=>b/ (18)

Table 1 collects some representative numbers for the siaddf N-particle basis for
singlet states§ = 0). The casen = N corresponds typically to basis sets used in HF
calculations whereas = 2N is about the minimum size for basis sets suitable for elactro
correlation methods. Evidently, using the linear expamsidhe wave function (Eqg. (6)) in
terms of all possible CSFs in a given basis{&g} (denoted full configuration interaction
(FCI)) is ruled out by thédactorial growth of the N-particle space, except for the very
smallest systems with at most 10 to 20 electrons in smalsksets. FCI calculations can
be carried out for expansion lengths beyond 1 billion ténihe truncation of the one-
and N-particle basis are the most important errors in quantthemical calculations.

2.3 Non-Dynamical Versus Dynamical Electron Correlation

Truncating the N-electron basis to a single determinantanidtional optimization of the
MO coefficients defines the HF method. Since the canonicalidiads form the basis for
most advanced electron correlation methods, the electsorlation energy is defined as
the difference between the exact non-relativistic enetgykand its HF counterpartin a
completebasis{®}:

Ecorr = Liezact — EHF,oo (19)

Table 1. Total size of the N-particle basis for singlet @ function of the number of electroNsand molecular
: . _ 1 n+1 2
orbitalsn: N5 = (xh3)"

n+1 \N/2
n=N n=2N
N Ncsf Ncsf
4 20 336
8 1764 866 320
12 226 512 3405 278 800
16 34 763 300 16 226 413 117 200
20 5924 217 936 86 391 974 193 251 584
24 1081 724 803 600 494 452 245 428 329 102 096
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Figure 2. Schematic representation of basis set trunceffents. The dotted line indicates the reference config-
uration space dimension and the dashed line the dimensitbre 6fCI space. Given a fixed basis §gf various
methods are points along a vertical line.

Ecqct IS apart from one- and two-electron systems unknown and bristbtained
from experimental data corrected for relativistic effedis some cases Quantum Monte
Carlo technigues may provide accurate reference data.id&irgy electron correlation as
the inadequacy of expanding the N-electron wave functiom single Slater determinant
(or a single CSF) two different effects can be identified.

The HF wave function by itself may be even qualitatively imeat due to near-
degeneracy effects: low-lying configurations stronglyemtt with each other resulting
in large off-diagonal elements &f (Eq. (7)), so that the wave function is wiulti-configu-
rational nature. This effect is termetbn-dynamicatlectron correlation. Itis frequently of
no importance for closed-shell molecules close to theiilibgiwm geometries but rapidly
gains importance for open-shell systems, in excited stétassition metal compounds,
for molecular systems at strained structures as well as secuence of bond disrupture
or bond breaking. Computing chemical reaction paths atelyreequires the balanced
(or unbiased) description of all intermediate structuethait the minimum configuration
space is the joined set of all near-degenerate configusatitimg the path. Treating sev-
eral electronic states on the same footing requires simikasures to ensure unbiased
treatment.

Dynamicalelectron correlation arises because - even though qusitatorrect - the
HF mean-field model cannot catch the instantaneous eleetemtron interaction correctly.
The mathematical structure of the Hamiltonian enforceo&atsp conditioh there is a
singularity in the Hamiltonian close to the coalescencenpavhere the interelectronic
distance of a pair of electrong; — 0 vanishes. To cancel this singularity the wave
function must contain linear terms; so that there is a cusp at the coalescence point.
To describe this cusp in terms of products one-electrontfomg requires high-angular
momentum basis functions (angular correlation). Dynahdoarelation effects may be
accounted for by a variety of methods. Single-referencenaa= imply a qualitatively
correct HF reference state whereas more general multieraée methods can cope with
any multi-configurational reference wave function.



Electron correlation methods aim at approximating the FSUl, i.e. expanding the
wave function in the full N-electron basis at a given onectn basis set. Different
methods can be classified by the way the FCI space is trunf&tdegure 2).

2.4 One-Electron Basis Sets

For the ground state of Helium it has been empirically fourad the energy contribution of
an individual orbital with quantum numbensnl solely depends upon the principal quan-
tum number. This finding suggests the construction of badisierarchies such that the
next level of accuracy should include all orbitals of theregponding principal quantum
number. Thus, the minimum basis set e.g. for carbon amoarttetn=1,2 (2s1p). In-
cremented by one set of polarization functions n=3 (1s1gias the double zeta (DZ),
adding another set n=4 (1s1pld1f) yields the triple zetg (&sis etc. These atomic ba-
sis functions are built from contracted GTOs (CGTOSs) i.eedixinear combinations of
primitive GTOs. So far only the number and angular momentu®TOs is fixed. Con-
traction length, contraction coefficients and exponenthefindividual primitive GTOs
are determined by minimizing the averaged energy over orseweral atomic states at
HF (for minimum basis sets) and correlated level. Furthéindpation might also involve
diatomics especially of the heavier elements in order taawpthe applicability to molec-
ular calculations. The exponents of the primitive GTOs diterochosen to (partially) form
an even-tempered series, ig.= a; 1.

X1
X2
X3
X4
X5
X6
X7
X8
X9

I

Xn —
segmented contraction general contraction
Figure 3. Segmented vs. generally contracted basis setgriflitive GTOsx,, belong to the same angular
momentum quantum numbée= my, + 1, + nau.

There are two types of basis sets denoted generally coatiaod segmented. Whereas
segmented basis sets aim at minimizing the contractionheargl thus the number of prim-
itive integrals to evaluate, the general contractions@kpkusing intermediate quantities
for an entire contraction set at the expense of large caidralengths. Most integral codes
favour one or the other basis set type.

Initially, the concept to add all basis functions belongiog given principle number
simultaneously was taken advantage of by the atomic-niatubital (ANO) basis sefs
They form generally contracted basis sets and the cordractefficients are obtained as
the eigenvectors of the one-electron density matrix wighingest eigenvalues (occupation



numbers). Thus given the number of primitives and their egods the density matrix
averaged over several low-lying atomic states based on stentron correlation method
in the primitive GTO basis is computed. The NOs with the hgleccupation numbers
are used to define the contraction coefficients of the basiFee ANO basis sets are now
available for almost the entire periodic tatfé& 1

The segmentedorrelation consistent basis s€tc-pVXZ,cc-pCVXZ, aug-cc-pVXZ,
X=D,T,Q,5,6) by Dunning and co-workérs'3. They have been shown to form a balanced
sequence of increasing accuracy and have been often usedtfapolation of proper-
ties to the complete basis set (CBS) limit. Finally, there segmented basis sets intro-
duced by Ahlrichs and co-workéfs!'® whose main emphasis was to provide compact
basis sets well-suited for correlated molecular calcoteti Many basis sets are available
fromhtt p:// ww. ensl . pnl . gov/ forms/ basi sformhtm .

Obviously, the choice of the one-electron basis is cruciaife quality of a calculation.
Turning primarily to "simple properties” such as geomedréand vibrational frequencies,
their calculation at the uncorrelated (HF) level of theoan de carried out reasonably
accurate (vibrational frequencies with empirical scalimdy) with DZ quality basis sets.
Using electron correlation methods (including DFT!) regsiusually at least TZ quality
basis sets. Turning to properties, which sample the electensity distribution in regions
spatially different from those relevant for the energy givise to more stringent basis set
requirements. Static electric multipole moments, sanygte so that not only very diffuse
basis functions but also those lifjher angular momenturare required. In addition the
result is sensitive to the level of dynamic electron cotietatreatment. To describe Ry-
dberg states also calls for very diffuse basis functionsndwe obtain qualitatively correct
results. Similarly, there is no point in correlating the n@lence electrons of a molecule
while using a standard polarized valence basis set, as teagsufficiently flexible to in-
corporate core and core-valence correlation at all. Howefre core-electrons contribute
substantially to the correlation energy as they are spatiédse to each other, thereby
forcing energetically favourable but (with inadequateidasts) artificial valence electron
density distributions. In summary, correlating core gl@ts$ without basis sets augmented
by tight basis functions including those of high angular neaam, at best is a waste of
computer time and at worst deteriorates the quality of theutation.

2.5 Electron Correlation Methods: N-Electron Basis Truncdion

Electron correlation methods aim at approximating the egalution within a given one-
electron basis set by truncating the full N-electron bas&oime systematic way. Basically
three different methods with many individual variants arese: configuration interaction,
perturbation theory and coupled-cluster methods.

The multi-reference configuration interaction (MRCI) madrexpands the wave func-
tion linearly in the N-electron basis. Truncation is aclkeiéby defining a reference space
and restricting the configuration space to single and doesditations out of each con-
figuration contained in the reference space, which is chegeh as to deal with the non-
dynamical electron correlation.

ref ab
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i ia ij



There are several variants of this method. Internally @mtéd MRCH restricts the ref-
erence space to a single multi-configurational wave fundii@reby making the size of
the configuration space independent of the size of the mefereonfiguration space. Other
variants treat only a part of the configuration space vanieaily while the remaining con-
figurations enter through perturbation theGry

Perturbation theory splits the Hamilton operator into a#teorder approximation and
a fluctuation potential. Non-degenerate (or single-refeeg¢ Mgller-Plesset (MP) pertur-
bation theory uses the Fock operator as zeroth order appadixin, thus all eigenvalues
and eigenvectors are available straight from the initial ¢dffculation. Working in the
canonical HF orbital basis, energies up to third order asdlable straight away. The no-
tation (0|O|n) denotes the matrix element between the ground state deeemtrand any
excited determinant (solutions &1, eigenvalued;, orbital energies;).

H=Ho+H =F+H (21)
E=Ey+ ) E (22)
i=1
Eo = (0|Ho|0) = Zzez (23)
Ey = (i|H'li) = B"" — Eq (24)
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(26)
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Important variants thereof include CASPf2using a single-reference multi-
configurational zeroth order wave function, which has beeccessfully applied to
a wide variety of ground and excited stafes

coupled-cluster (CC) methods invoke a non-linear expansiche wave function.

Voo =TTy =e” ®, (27)
T:1+T+%7ﬂ+...:g%ﬂ (28)
T = Z Ti (29)

T ®o = Zt“ 2% = th (30)

To®y = Ztab abq)o _ Ztabq,ab (31)

ijab ijab

The cluster operator, are linear combinations of excitation operatoreighted with
cluster amplitudes. Applied to a reference state (here a closed shell Slatermetant)



they generate alkth excited Slater determinantes with respect to the reterstate?,.
Eq. (27) expands thus to

Voo=(1+Ti+T+ T +Th+ T +Ts+..)% (32)

All these wave function based expansions - in principle -laimmproved systemati-
cally in order to approach the FCI limit: MRCI may either inase the excitation level or
enlarge the reference space. Perturbation theory can lieeed up to high order and in
the coupled-cluster method the cluster operator (Eq. @9)be truncated at’™® excita-
tion level. As the MPn series may diverge, the coupled-elustethod is more expensive
but more reliable. A serious drawback of MPn and CC appraachéhe limitation to
single reference cases.

Density functional theory is somewhat special as electaoretation and exchange are
treated through a more or less well-founded correlatiachharge functional of the one-
electron density. There is no direct way connecting wavetion expansions with DFT.
Owing to the limited knowledge about the properties of éxactexchange-correlation
functional, there can be done little abaystematiémproving DFT towards the FCI limit.
In terms of computational efficiency DFT is by far superioHartree-Fock and electron
correlation methods (maybe with exceptiorlaéal MP22%). Compared to electron corre-
lation methods, DFT results display a considerable spreadduracy depending upon the
specific case as well as the utilized functional whereas éineyalmost always superior to
HF.

3 Errors

3.1 Basis Set Truncation Errors

To this end we can define the apparent error as the differegtveebn the true solution
of the electronic Schrodinger equation (correspondirthéoexperimental value corrected
for non-BO effects and possibly relativistic correctian$his can further be subdivided
into the basis set error associated with the limited sizéefit-electron particle basis and
the n-electron error associated with the incompleteneti¥eai-electron basis. In the limit
of a complete basis set the basis set error vanishes ang swah-electron error remains
denoted théntrinsic error of the corresponding model.

One-electron basis set truncation errors may be very lagpecially if basis sets en-
tirely inadequate to the given problem or the desired aoyuase chosen. Under the as-
sumption, that non-dynamical electron correlation playsate, good theoretical estimates

method pCVvDZ pCVTZ pCVQZ pCV5Z pCV6Z 56-expln.

[10s2p2d]
MP2 -382.7 -477.8 -510.7 -523.1 -528.7 -536.4
CCSsD -387.8 -478.2  -507.1  -516.7 -520.6 -525.9

CCSD(T) -400.4 -498.0 -528.5 -538.7 -542.7 -548.3

Table 2. Recovered electron correlationritE, for No at equilibrium distanceRy_ny = 109.77pm. Esti-
mated basis set limits: -537.2 (MP-R12), -526.2 (CCSD-R¥8.2 (CCSD(T)-R12). Taken from Ref. 23. All
electrons correlated. 56-expln=(216 E(pCV62)-125 E(pZN&1.

10



method pvDZ pVTZ pVQZ pV5Z 45expln. est. intr. error

MP2 213.36 229.23 235.78 238.36 241.1 +12.7
MP3 191.31 205.76 212.14 21431 216.6 -11.8
MP4 203.58 221.13 22798 230.41 232.9 +4.5
CCsD 193.67 207.98 214.17 216.28 218.5 -9.9
CCSD(T) 200.69 216.70 223.17 225.42 227.8 -0.6
IMRCI 201.96 217.90 22419 226.31 228.5 +0.1
IMRCI+Q 200.74 216.62 223.14 225.37 227.7 -0.7

Table 3. Computed Dissociation energy in kcal/mol #éy.

Experiment: 228.4 kcal/mol. 45-extrapolatiof22e (PV52) )~64D- (2VQZ) Eycept extrapolation taken from
Ref. 24. Estimated intrinsic error taken as the dlffererm/ben experlmental value and 45-extrapolation.

of the CBS limit can be obtained from the so-called R12-méshavhich expand the wave
functions explicitly including terms linear in R12. Thid@aks for a more accurate de-
scription of the electron-electron cusp (Katos cusp cdéonlit In particular the relatively
cheap MP-R12 methd#22has been frequently used for benchmarking the CBS limit. Ta-
ble 2 demonstrates that only by employing very large basssugeto including functions

for the nitrogen molecule it is possible to recover more tB8% of the correlation en-
ergy. Hence, only extrapolation to the basis set limit (efct®n 4.1) is a practical way to
(almost) quantitatively take care of electron correlatidhe differences in the estimated
basis set limits indicate that the impact of N-electron $ast truncation is of the order of
10 mEh.

Systematic expansion of the N-electron basis towards théifa is in principle pos-
sible by the MPn perturbation series or by coupled-clustethads truncating the cluster
operator at higher and higher excitations. From the pralgpicint of view either approach
is limited to rather small basis sets and small systemsuRately, energdifferenceson-
verge more rapidly. In fact, IMRCI+Q/IMRCI and CCSD(T) atmast equivalent whereas
CCSD is clearly insufficient and MPn displays an oscillatir@aviour going from low to
higher order. Note, that even at the cc-pV5Z level the oeetabn basis set error is about
2-3 kcal/mol.

3.2 Basis Set Superposition Error

The basis set superposition error (BSSE) is a spuriousibatitm to the interaction en-

ergy arising form the improved description of each fragnietite total basis as compared
to the fragment basis alone. It is ultimately a consequefitkeoone-electron basis set
incompleteness. Evidently, the BSSE error will vanish gsiatically as the complete one-
electron basis is approached. BSSE appears whenever teeutaslgeometry is changed
and is particularly important for the computation of intetfan energies. Without correc-
tion an artificial increased binding energy is obtained. &ntipular when using modest
basis sets, BSSE can result in substantial distortionseoPH#S.

A conceptually simple method to account for BSSE is the cenpuiise correction
method® in which the energies of the fragments are computed in thebagis of the
entire complex and subtracted from the energy of the engiseem. Although there is
some debate about its accuracy it is the procedure of choieedount for BSSE (cf. a
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the CISD level of theory. Van der Waals radius of Ar is 12’883mpirica| well depth fotArs is estimated to 99.7

em~1 (453.6uE}) at d=3.753.

review on counterpoise thedfy.

Investigations on Bl indicate a BSSE error at experimental equilibrium distaote
about 0.8 kcal/mol for TZ and about 0.4 kcal/mol for QZ basitss Accurate extrapola-
tion to the complete basis set limit therefore must correcBISSE prior to extrapolation.
BSSE, however, also can be viewed as a basis set incommstirticator and thus used

to correct the binding energy by adding empirical fraction of the BSSE to correct for

basis set incompleteness.

Figure 4 illustrates the BSSE error for Ar in presence of arghost basis using a

variety of Dunnings correlation consistent basis setsaQt8D level of theory. BSSE is

moderately method dependent but the trends discusseddldrialyeneral. Increasing the
cardinal number of a given basis reduces the BSSE errorantizty. Valence electron

correlation basis sets and core valence basis sets showlar 8®SE error. Adding diffuse

functions strongly increases the BSSE and it vanishes muehk siowly with increasing
distance to the ghost basis. As a note of caution, correl#tia core electrons in a valence
basis almost doubles the BSSE error (without improving #seiits). Although the BSSE

error is somewhat method-dependent the conclusions aszajsrapplicable.

The argon dimer forms a van-der-Waals complex kept stallkdysby dispersion,
which is solely an dynamic electron correlation effect. Togerly describe such kind
of complexes several sets of diffuse functions are requifgdhe experimental equilib-
rium distance ofdr, the BSSE correction (twice the Ar-X interaction energy) amis to
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about 25@.E}, i.e. about 50% overbinding fotr, due to BSSE. As increasing the level
of electron correlation treatment increases the well degthe increasing the basis set
size on the one hand side improves the description of eleciorelation effects and on

the other hand side decreases the well depth due to reduc®d &%or, one can easily be
trapped by error compensation effects. An MP2 calculatigh e aug-cc-pVTZ basis

accidentally agrees quite well with the experimental welbith.

3.3 Core-Core and Core-Valence Electron Correlation

Core-core (CC) correlation are denoted electron cormagifects solely restricted to the
core electrons while core-valence (CV) correlation déssthe relaxation of the core elec-
trons upon valence electron correlation and vice versahodigh core and core-valence
electron correlation in absolute terms contributes largelthe total correlation energy
(No: E¥% = 408mEy, B = 548mE),23%), its differential effects on the electron dis-
tribution of the valence shells are modest. For compoundssifand second row ele-
ments the effects are fairly small. The dissociation en@fgi¥, e.g. changes by about
1.5 kcal/mot’, and the depth of the van-der-Waals minimum fos, is affected by about
4u.E;,28 corresponding to about 1% of the valence electron corosl@dntribution. Hence,
for the light atoms CC and CV correlation effects need to besimered for high-accuracy
calculations, only.

Note, that accounting for CC and CV correlation requiregddrasis sets and the treat-
ment of many electrons rendering calculations demandirgyveder, even though solely
correlating the valence electrons, the basis set musticadtadOs representing the inner-
shell electrons. This sparked the idea of representingrtherishell electrons by a suit-
ably parametrized potential as to reduce the basis set sizated effective core potential
(ECPs) in contrast to all-electron methods. ECPs are agipédcif the relaxation of the
core electrons upon chemical binding or valence electroretadion can be neglected. Of
course ECPs of neighbouring atoms must not overlap.

There are two different classes of ECPs: the pseudo orlgpaf% > which replaces
the valence orbitals by nodeless pseudo-potentials rdsegrtbe HF valence orbitals as
much as possible (in the sense of shape and orbital eneegidghe core electrons by a
potential (containing angular momentum projection opes®; = |I)(I|) of the form

L—1
U(r) =Ur(r) + Y_ Ui(r)P, (33)
=0

whereL — 1 is the maximum angular momentum of the core electrons. Thengals
U;(r) and pseudo orbitals are fitted to an analytic form involvirep&sians. The ab initio
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model potentials (AIMP) methdd 32 uses valence orbitals of the correct nodal structure.

H=) - V2+Z ZEL L VA ) + VAL + PA+ S rt + Vo (39)

i>j
core(A)
V(i) = — e 42 Z Je(i) ~ ) Apri*esp(—apri) /i (35)
k

core(A)

vA L) = Z K.(i) = non-local representation (36)
core(A)

PA= Y 2e|P )P (37)

C

Partitioning the orbital space into core and valence dibitze effective core potential is
derived by a local representation of the Coulomb potential @ spectral representation
of the exchange potential, i.e. the core electrons are ceglay the HF potential. In
order to ensure the orthogonality of core and valence dshétad to avoid collapsing the
valence orbitals into the core space, a level shifter is dddiéfting the core orbitals to
positive energies, so that they give a positive contrilsutio the valence orbital energy
unless the valence orbitals are orthogonal to the coreadsbithe specification of AIMPs
involves apart from the local and non-local potential exgiams a basis set expansion of
the core orbitals, thereby allowing to combine AIMPs withignary basis sets. The quality
of AIMPs depends upon the quality of the reference calautatHowever, to achieve the
correct nodal structure of the valence orbitals the valdrasis sets are larger than those
required for the pseudo-orbital method and include tigh©ST

3.4 Size-Extensivity Errors

Although the general approaches towards the inclusion néardhcal electron correlation
discussed so far yield identical results going to infinitdesrand infinite excitation, respec-
tively, truncated methods display shortcomings.

An important issue is the correct scaling of the correlagoergy with the number
of particles. The correlation energy of a system consisting identical non-interacting
molecules should scale linearly with number of independebsystems n. CC and MPn in
fact give the correct answer. This is not generally truerfiant¢ated Cl methods. A related
property is size-consistency, i.e. the energy of two namatting systems must be the sum
of the individual components.

EAB(RAB%OO):EA-FEB (38)

A method may be size-extensive but not size-consistent.célehis desirable to apply
a size-extensive electron correlation method to a sizeistamt reference wave function.
Since RHF is not size-consistent, correlation treatmeaseth upon RHF reference wave
function may not necessarily be size-consistent at theelaied level either.

The lack of size-extensivity of truncated Cl in fact rendérsseless for systems con-
taining many electrons, correct relative energies recariranbiased treatment of electron
correlation throughout electronic states and moleculafigarations. Owing to the lack of

14



Interaction potential for Ar2 (BSSE corrected) Differential size-extensivity error
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Figure 5. Ar-Ar interaction potential corrected for BSSEmmuted at CCSD, CISD,ACPF and AQCC level of
theory using the cc-CVTZ basis set, all electrons corrdlages the basis lacks diffuse functions, the interaction
potential is completely repulsive and corresponds to thesd-shell single reference case at all distances. The dif-
ferential size-extensivity error defined as the differetoctie CCSD energy shifted such thAtE (r — oo) = 0.

Van derOWaaIs radius of Ar is 1.88, empirical well depth forAr; is estimated to 99.¢m~—! (453.6uE}) at
d=3.75A.

generally applicable methods for multi-configurationdrence wave functions, approxi-
mately size-extensive MRCI methods have been developeg widely used a posteriori
Davidson correction scales the computed correlation gneitly the weight of the refer-

ence configuration in the final wave function

A-EDLwidson = (E - EO)(]- - Cg) (39)

whereE, denotes the energy of the reference wave functioncamgithe weight of the re-
laxed reference wave function in the final wave functioneAigatively, the size-extensivity
of the MRCI method may be approximately restored by optingzhe renormalized func-
tional, where¥® is the component of the wave function not included in therexfee
space (intermediate normalization).

(U[H — Bo|¥)
L+ g(wee|uee)

The scaling factoly depends upon the number of correlated electmonsnd defines
various approximations such as MRAQ®Qg = 1 - %) and MRACPR*
(9 = :2). g = 1 corresponds to MRCI.

Whereas a MRCI treatment is variational and does not divevga though the ref-
erence space might be inadequate, this does not apply tdzéwedensivity corrected
variants. They depend upon the proper choice of the refergpace and similar to MPn
intruder states and near-degeneracies with configuratiohsncluded in the reference
space produces artifacts. Hence, for scanning large pasrtibthe potential energy surface
MRCI though suffering from the lack of size-extensivity i®ra robust than MRAQCC or
MRACPF.

Whereas CCSD is size-consistent, i.e. the interactiompialeoes for large distances
to zero, this does neither apply to CISD nor to its size-esitaty corrected counterparts
(Figure 5, left) although it may be small in some cases. Hanawsing the supermolecule

Ecorr = (40)
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approach amounts to shifting the zero point of the potemtiahe Ar-Ar potential at
large distances. Since thér, case is an ideal single reference case the degree of size-
extensivity can be approximately judged by the differeneeMeen the CCSD and the
AQCC/ACPF/CISD curves (Figure 5, right).

3.5 Orbital Resolution

The separation of MO coefficient optimization (HF or MCSCi)m the dynamical elec-
tron correlation treatment introduces a dependence uppMth basis. The problem of
orbital resolution is connected to the partitioning of th®Mpace. Whereas the HF energy
is invariant to unitary transformation among the occupiedrmccupied orbitals this does
not apply to electron correlation methods: Mgller-Plegsgturbation theory requires the
canonical HF orbitals, CASSCF calculations are invarianly avith respect to rotations
among frozen, inactive, active and virtual orbitals etc. aMas some of the orbital de-
pendencies (such as for MP2) are rather related to the ingoltation, others are inherent
due to the choice of the method-dependent configuratiorespalection. Whenever the
MO basis is partially invariant to orbital rotations in theCMoptimization step they need
to be "resolved” by solving an eigenvalue problem of somerafoe with non-degenerate
eigenvalues within the invariant subspace such as a Foalmoatthe one-electron den-
sity matrix. However, accidental degeneracies may occdiifdhe degenerate orbitals in
the subsequent electron correlation treatment are spditdifferent orbital groups spuri-
ous results (such as spikes on a PES) may occur. The remexlyse ta different orbital
resolution operator.

Regarding the computation of excitation energies by ctmapgie MO basis from a
state-specific orbital optimization introduces a bias rota of this state in the subsequent
dynamical electron correlation treatment. This can be eskas a systematic error in the
excitation energies. For this reason commonly state-geerarbitals are employed, that is
the energy functional that is minimized during orbital optiation is a weighted average
over all states of interest.

Since the ground and excited state PES are quite differdiffatent levels of theory,
at certain molecular configurations we are close to avoideskings at one level of theory
while far away from it at a different level. If this occurs ftive orbital optimization step
in contrast to the inclusion of dynamical electron coriielatthe MO basis may be even
qualitatively completely wrong thereby reducing the aecyrof the subsequent electron
correlation treatment drastically. To overcome this biagislusion of a sufficiently large
configuration space requires substantial effort if at atcassful.

3.6 Relativistic Effects

Relativistic effects can be defined as anything arising ftbenfinite speed of lightd =~
137au) as compared ©= oo for the non-relativistic case. The most fundamental stgrti
point for molecular many electron relativistic treatmeistshe Dirac-Breit Hamiltonian
HPB with possibly additional quantum electrodynamical coticets.

HDB — HDC + rHBreit (41)
— Z hiDirac + Z 1/7,1] + HGaunt + Hretard (42)
i i>j
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HPB can be viewed as the Dirac-Coulomb HamiltontdR“ plus perturbative treatment
of two-electron relativistic corrections (Gaunt term aethrded Hamiltonian or derived
corrections from QED)HP¢ treats one-electron relativistic effects exactly in terofis
a linear combination of N one-electron Dirac Hamiltonigif$"2¢ while retaining the
non-relativistic electron-electron repulsion term. Theéativistic four-component single-
particle wave functions can be decomposed into two two-eprapts termed "large” and
"small”. These terms are related by the kinetic energy bmdasondition. In contrast to
the non-relativistic case the Dirac-Breit Hamiltonian wanbe rigorously derived and is
not fully Lorentz invariant so that purists may considerlatreist theory of many-electron
systems not yet available.

The spectrum of the Dirac-Breit Hamiltonian is qualitaljveharacterized by having
the bound states bracketed by continuum states2at > E > —oo andoo > E > 0.
The presence of a negative continuum leads to the varidiiofiapse (Brown-Ravenhall
disease). Either by imposing appropriate boundary cangitor by modifying the Hamil-
tonian such as to project out the undesired negative caminprevents the variational
collapse (no-pair HamiltonigR). Once the appropriate relativistic Hamiltonian is cho-
sen in principle the standard non-relativistic methods lwampplied analogously except
for working with a four-component wave function. Expandihg large and small com-
ponents in atom-centered basis sets requires very large d®ts as to fullfill the kinetic
energy balance condition. This puts serious constrairs tipe range of applicability so
that the fully relativistic approach is often simplified byasirelativistic approximations or
the use of pseudopotentials especially since we have tadmredectron correlation and
relativistic effects simultaneously.

In the non-relativistic limit the small component vanistaesl only the large compo-
nent is retained. Separating large and small componentsibgry transformations of
the relativistic Hamiltonian and truncating the resultidgmiltonian at ordet=2 yields
the Pauli and Breit-Pauli two-component form starting fregH¢ and# P B, respectively.
Eliminating magnetic interactions (spin-orbit couplirayly the mass-velocity correction
and the Darwin term are retained.

1
Hmassvel = _@ ;pf (43)
o
Hparwin = ﬁ ZA 0ria (44)
(45)

Choosing instead the four-component no-pair Hamiltotfias starting point and applying
the Douglas-Kroll transformatiéf finally yields the spin-free relativistic one-component
Douglas-Kroll Hamiltonian. The latter is variationallyasie and can be employed in all-
electron treatments. All-electron one-component treatmef systems containing many
heavy atoms is computationally demanding due to the lamgedi relativistic basis sets
although much cheaper than their fully relativistic coupéets. Relativistic ECPs whether
of pseudopotential or AIMP type are usually derived fronatigistic Cowan-Griffirt” or
Douglas-Kroll all-electron calculations. The paramettian of RECPs may also accom-
modate error compensation such as deficiencies in the nefergata and inappropriate
basis sets. Due to this empirical element they should be agkdin combination with
the valence basis set used for parametrization. AIMPs orotier hand may be com-
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bined with any basis set sufficiently flexible to represestribdal structure of the valence
orbitals.

The main consequences of relativistic effects are (i) tachbatraction of all s and
p1/2 atomic orbitals as well as the inner-shpdl,; AOs (ii) the spin-orbit splitting for
all AOs with non-vanishing orbital angular momentum ang the radial expansion and
energetic destabilization of most d and all f type A®sRelativistic effects influence
the chemistry of 5d block elements, lanthanoids and in agr the actinoids owing to
relativistic changes to the valence shell structure. Thiges them potentially offering
a very rich not yet explored chemistry. Particular largeeet are found for gold and
gold chemistry (aurophilic attractio#f) Similar applies to strong closed-shell interactions,
which are primarily a consequence of relativistic effétts

4 Extrapolation Schemes

4.1 One-Electron Basis Set Extrapolation

Of particular importance is the possibility to extrapoladehe complete basis set limit.
This amounts to extrapolating horizontally to the right igle 2. To allow for extrapo-
lation schemes it is mandatory to have a hierarchical semuehbasis sets that converge
uniformly to the CBS limit. The cc-pVXZ, cc-pCVXZ basis sdtaym such a sequence.
Since the HF energy and the correlation energy have diffe@mvergence characteristics
separate extrapolation of each term is important.

For the correlation energy there is some theoretical mitiwaon the functional form
establishing a relationship between maximum angular meumeinf the basis set and the
correlation energ\ E,.,.. of He at the Cl level and for many-electron atoms at the MP2
level. The asymptotic behaviour of the contribution by abitals of angular momentuin
by a basis saturated individually for ealis given by

ABeorra = all +5) (46)

Given a (saturated) basis set with maximum quantum nuihlibe correlation energy is
of the form

AEcorr = A-Ecorr,oo + b(L + ]-)73 (47)

Identifying L + 1 with the cardinal numbek (D=2,T=3,...) of the cc basis sets and using
a two-point extrapolation with two successive basis setshtain

AECOM‘,X—{—I (X + 1)3 — AEcorr,XX3
(X +1)° — X3

It has been empirically found, that the most reliable rasate obtained by two-point fits
using the two largest practical basis $&t€omparison with correlated calculations using
R12 methods indicate the correct asymptotic basis set fonithe correlation enerdy
The CBS limit of the correlation energy should be indepehdéthe chosen pair of basis
sets. In practice these authors have found that extrapofatnvolving the X=D basis
sets are inferior. As the number of basis functidnsn the basis sets grow a3, the
correlation energy scales 8§1/N) and the computational effort for integral evaluation

AEcorr,oo = (48)
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scales a®) (N*) so that the relation between correlation energy and CPUdomsumption
iS AE ory & Ctyt,.

The extrapolation of the HF energy to the CBS limit has no tagoal motivation.
Most popular are the exponential and power forms, e.g.

Exr = Exrpoo + Be X (49)
Epr = Egrec + BX ¢ (50)
(51)

Apart from the general finding that the HF energy convergeshmmore rapidly than the
correlation energy with cardinal number X, conclusionsardiguous about the extrapo-
lation errof3,

Application of this extrapolation formula to reaction ealifies , weak interactioff§
spectroscopic constants and dipole monféniteve been encouraging and a statistical
analysis of the extrapolated data to experimental as walkkfesence data based on the
MP-R121:22and the CC-R12 methdtiindicate thathemical accuragyi.e. ~ 4k.J/mol
can be achieved already at the 34-extrapolation level. x&2ygolations, though already
largely improving the quality of the results compared to it data, are far from chemi-
cal accuracy. Similar applies to the raw data itself eveteiigre basis sets. The exponential
extrapolation advocated by Dunning and coworkers tendseoestimate the rate of con-
vergence.

ABY™ = ES' + aeX (52)

It is somewhat problematic that a good estimate of the CBS tmguires large basis
sets thereby excluding application to large moleculeshlanet. al. extrapolated HF and
correlation energies by the foffn

Enur = Egroo + Aur X @ (53)
ECOT‘T = corr,o0 + ACOTTX_B (54)
(55)

The constantsx and 8 are considered universal and have been obtained by fittieag th
X=D,T energies to the CBS limits estimated by larger efforhis method allows to
extrapolate to the CBS limit using relatively small basis¥e However, since double zeta
type basis sets are known to be insufficient for electronetation, the parametrization
must take care of it, which adds an element of statisticatrtamty as error compensation
is implicitly exploited, which may or may not work on systemat included in the test
suite used for parametrization.

In order to derive a basis set convergence for moleculargutigs, which may be
largely different from the electronic energy, one startsrfran expression involving the
energy derivative of the Hamiltonian

HO) = H(\ = 0) + AV (56)

so that a given property is associated with some pertunbaticghe Hamiltonian. Upon
expanding the correlation energy as

By =) ) — X" (57)
n=0 k=0
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the coefficient@r(lk) govern the convergence of the kth order property. It is arpriot
possible to predict the relative importance of the termérsgas X ~”, so that asymptotic
scaling may not be achieved with basis sets of cardinal ntenfi which it is possible to
perform calculations and each property requires carefeldtigations.

A note of caution must be supplied as well: the extrapolatsniely models the errors
associated with the expansion of the electron-electrop.dDther errors such as basis set
superposition error, size-extensivity error or the userofllachosen basis (e.g. lack of
diffuse basis functions for multipole moments) must be ected for separately. Secondly,
it is necessary to point out that these extrapolation sckemge been used mostly in
conjunction with single-reference systems at the MP or G@llef theory. Since the
above scheme considers dynamic electron correlation @rig/tempting to extend it to
multi-reference cases by defining the electron correlatimargy with respect to energy of
the reference wave function. However, the rather foggyrdison between dynamic and
non-dynamic electron correlation and thereby its depecelapon reference configuration
space definition, suggests a cautious attitude.

4.2 N-Electron Basis Set Extrapolation

Retaining a given one-electron basis somewhat similamapgtations to the FCI limit,
i.e. in vertical direction in Figure 2 would be desirablem8ar to the hierarchical one-
electron basis sets, a systematic, uniform improvemenief-electron basis is manda-
tory. Mgller-Plesset perturbation series can be ruled oettd the tendency to diverge
at high order without having an a priori error indicator ahtiaTruncated approximately
size-extensive MRCI cannot be easily extended in practérals. Thus, coupled-cluster
methods seem to provide the only possible route to this fEskcating the cluster opera-
tor 7 heavily such as e.g. in CCD, CC2 may yield extrapolatiorgdiarbenefitting from
error compensation (such as e.g. MP2). CCSD(T) and CCSDVever, already come
quite close to the FCI limit and continuing to higher ordarstér expansions may allow
accurate extrapolations. Due to the introduction of nevanégues CC codes capable of
going to high order truncations of the cluster operator megolme available in near future.

4.3 Gaussian-n (Gn) Models

In actual problems, however, the ultimate aim is to extrafoto the FCI result at CBS
limit (i.e. the exact result) including corrections for agroint vibration and relativistic
effects as to model the experimental situation, i.e. extijon to the upper right corner
of Figure 2. Although effects due to one- and N-electrondsst truncation are in general
non-additive, extrapolation models can be devised, whisluime the additivity of certain
contributions. As the model is devised such as to reprocheeeata (energies, ionization
potentials, electron affinities, proton affinities) of attesite of molecules, by virtue of
the choice of basis sets and level of correlation treatnaerdgr compensation is implicitly
made use of. The G3 mod@luses a HF/6-31G(d) optimized equilibrium structure and
scaled harmonic frequencies (scale factor 0.8929) to ctertpe zero-point energy. The
geometry is refined at the all-electron MP2/6-31G(d) lekeseries of single-point calcu-
lations is carried out at this molecular geometry to estintlaé correlation energy starting
with an MP4/6-31G(d) calculation as reference point. Gdioas are computed for diffuse
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functions, higher polarization functions, correlatiomtibutions beyond MP4 through
guadratic Cl (a CC variant) and corrections for basis setcesfand non-additivity of dif-
fuse vs. polarization function extensions computed agela@étron MP2 level. Spin-orbit
corrections for atomic species taken from experiment ouigte theoretical calculations
are added along with the zero point energy. Finally, soeddfligher level corrections - a
parametrized expression depending upon the number ofa@kerctron pairs optimized
to reproduce the test suite results - are added. Averagatuew for energies, ionization
potentials, electron affinities, proton affinities are betw 4 and 8 kJ/mol. The Gn mod-
els (n=1,2,3¥ % are available for first and second row elements, only. Mcggalue to
assuming additivity for various contributions and paraiet! higher level correction this
model is likely to benefit largely from error compensatiomtisat it would be difficult to
extend it to the entire periodic table. There are also vsi@2(MP2%* and G3(MP2Y,
which estimate basis set effects at MP2 level. The assac@imputational effort goes
as G3(MP2xG2(MP2kG3<G2*2 Note in particular, that the Gn methods are tied to
certain basis sets and targets, for which these basis setsagiequate will invariably lead
to unreliable results.

5 Calibration and Reference Data

A remarkable side effect of extrapolation schemes parareetito fit experimental data
(thereby relying on error compensation) is the availabiof extensive test suites of
molecules, for which reliable experimental data or aceudaita from other sources ex-
ist. This includes e.g. the G(n) test $8tsThere are many such reference data concerning
a variety of properties frequently used for parametrizatibdensity functionals. Although
the agreement with the reference data may be stunning iegate comparatively small
effort, they constitute unbounded extrapolation for systenot included in the test suite.
In addition error estimates are unavailable as the impicibr compensation may add up
effects of opposite sign, which in turn depend upon the systequestion. Large discrep-
ancies between such extrapolations and the experimentahtay indicate experimental
errors as well as a failure of the extrapolation procedungelk

More reliable calibration procedures avoid tying themsslto experimental data but
rather invoke a sequence of calculations of increasingracgun terms of one- and N-
electron basis sets, chosen to allow separating the vagioois and judging to what extent
additivity is a safe assumption.

A considerable problem associated with quantum chemidaliledion comprises the
decision whether a given method is applicable to a givenlpmb In many cases there
is no simple a priori yes/no answer to the problem but insteadries of test calculations
is required. Solely comparing the computed results withesemperimental or otherwise
derived reference data is frequently of little help, sin@acannot distinguish between er-
ror compensation and correct results. In other words evepiteof good agreement with
reference data, we cannot connect it to the parametersndateg the outcome of the
guantum chemical calculations. In addition, we face thélemm of having either no ref-
erence data at hand or the derivation of the reference daasttlves relied on theoretical
models that may not be appropriate. Thus multiple sourcesrof generally hamper any
reasonable interpretation of the comparison.

Therefore, a generally profitable approach is to perfeamesof quantum chemical
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calculations, which are set up such as to deduce the effexisofgle source of error as
accurately as possible. Since it is not save to assume stiaigyardly the additivity of

different error sources calibration or benchmarking éersaurces of error against a judi-
cial chosen reference is of great value for the understgratinthe properties of quantum
chemical methods. In particular systematic investigatiom the impact of certain param-
eters, provide a considerable insight into the methods emtbasome extent transferable.

Of crucial importance is to disentangle the one-electraigset truncation error from
the intrinsic (i.e. systematic) error of a given method. c8iiit is usually not possible
to repeat extensive calibration calculations for largeauoles, it is sensible to define a
set of representative reference molecules. Setting upi@ssei calculations we aim at
elucidating the intrinsic (or systematic) error of quanttimemical methods with respect to
the desired property. Provided, the reference set was olaggeopriately, the results will
be mostly transferable to the larger systems.

Of particular value are benchmarks probing the full N-egl@etbasis set limit within a
given (incomplete) one-electron basis. Here FCI calootetiare to be mentioned in the
first place - as they are exact within the given one-electesisset, which should be of
double zeta if possible triple zeta quality for meaningfoinparisons. Second to it are
coupled-cluster technigues including quadruple or higixeitations in particular the R12
variants, which converge rapidly to the one-electron bssfi$imit. At least for true single-
reference cases they practically reproduce the FCI data thEageneral case and small
molecules size-extensivity corrected MR-SDCI such as MREE and MR-ACPF may
provide reference data. Often it is necessary to extraptdethe CBS limit in the course
of the analysis.

5.1 Error Indicators

Hence, scrutinizing solely the final results of a series dfwdations will indicate the
non-applicability of a given method by divergence or cogesice to different method-
dependent limits. To understand the failure of a methodireguo verify whether the
basic assumptions of the method hold for the specific case.

Provided the MOs are obtained from a qualitatively corr€2f 8alculation it is still the
guestion for diagnostics on the applicability of the methbdcase of Cl one can simply
examine the weight of the reference wave function: if comigjons with large weights ap-
pear from outside the reference space, the reference speatémappropriately adjusted.
For Coupled-Cluster methods commonly thediagnostic is used, which amounts to the
scaled norm of the single excitation cluster amplitudese fidasoning for the choice of
this indicator is that the single excitations reflect ordiias best. CCSD calculations with
71 > 0.02 call for caution; inclusion of higher excitations will iresse the robustness of
the CC treatment. Mgller-Plesset perturbation theorysis édfective. Looking at the norm
of correction vector and energy of MP2 solely may errongouslicate applicability. In-
cluding MP3 and monitoring the change in correlation enéngyement and norm of the
correction vector is more sensitive and more represeetafithe convergence of the MPn
series. The approximately size-extensively corrected Mig@ctionals such as MRACPF
and MRAQCC are also fairly sensitive to intruder states,olvlin serious cases may force
them to diverge (this depends upon the wave function opé#titin scheme).

Finally, Figure 6 displays the characteristic behaviouvarious standard techniques
on the dissociation of the Nmolecule. Note, that methods relying on the closed shell
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Figure 6. Total energies computed at various levels of theBHF, CASSCF (valence CAS, 176 CSFs), MP2,
CCSD, CCSD(T), CASPT2 (valence CAS), MR-CISD (valence Céfénence space), MR-AQCC (valenc CAS
reference space); cc-pVTZ basis set, 1s electrons kepgrfraxperimental dissociation energy 0.364 and
bond length 1.074.

HF reference (MP2, CCSD, CCSD(T)) fail badly as the RHF exiee performs poorly.
Methods relying on an appropriate zeroth order MCSCF refaaevave functions (MR-
CISD, MRAQCC, CASPT?2) describe the dissociation qualidyi correct.

6 Summary

This brief survey has described the most relevant ingreslemd practical error sources in
guantum chemical (cluster) calculations using standaathtyum chemical methods such as
HF, MCSCF, perturbation theory, coupled-cluster methaubs @nfiguration interaction.
It has been pointed out that the most important error sounegspart from using a single-
reference method in a multi-reference case, the choice f and N-electron basis set.
The concept of non-dynamical versus dynamical electroretaiion has been explained.
The molecular orbital basis may give rise to a bias in favdwne state or be even quali-
tatively completely inadequate for a given purpose. Imprgthe MO basis is much more
important than high-level electron correlation treatm@nbital rotations mixing MOs that
are treated on a different footing in the dynamical corietatreatment lead to artifacts.
Relativistic effects are important for the chemistry of tleavy elements. However, even
for the second and third-row elements relativistic effége to be considered for highly
accurate calculations. Highly accurate data can be olstaing/ from extrapolations to
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the CBS limit, high-level electron correlation treatmend&limination of size-extensivity
and BSSE errors.

Cheap extrapolation models aiming at the applicability twide range of systems
almost invariably contain an element of statistics, whiels the model explicitly and/or
implicitly to a set of reference data thereby benefittingrfrerror compensation.

A critical attitude towards the quality of a calculation &ry beneficial. Decomposition
of the total error into its various sources and calibratibsame suitably chosen reference
systems should always be taken into account whenever tha@me fundamental doubt
about the results given the required level of accuracy.
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