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This lecture primarily deals with aspects of quantum chemical ab initio cluster codes without
periodic boundary conditions. The most important parameters, which any user of quantum
chemical program packages must select when setting up a problem is the choice of the model
Hamiltonian and the one-electron and N-electron basis set.As there is no general fool-proof
recipe available that covers the general case, we approach the problem by discussing the most
relevant approximations and their implications. The aim isto provide the reader with a basic
idea of the various approximations and to what extent results and conclusions maybe affected.
Finally it is anticipated that most readers will not carry out quantum chemical calculations for
their own sake but rather use them as a tool to extract data to be processed further for the
investigation of the problem in question. Here, selecting an appropriate theoretical method and
being aware of their potential shortcomings is even more important as not to jump to entirely
false conclusions. Following a short review of the basic models and approximations, the major
errors are discussed in some detail. Extrapolation and calibration methods are presented and
illustrative case studies are discussed.

1 Introduction

Although the general aim is to strive for (highly) accurate solutions of the many-body
Schrödinger equation this is possible only for the smallest systems because the resource re-
quirements in terms of computer time, memory and disk space increase rather unfavourably
with the size of the system. However, in many cases there is noneed to carry out calcula-
tions at high accuracy since experimental problems associated with larger systems limit the
resolution and correspondingly theoretical treatment of lower accuracy may be perfectly
sufficient. Frequently, even semiquantitative answers areall that is needed and occasion-
ally apparently simple problems are hard to solve accurate enough. Thus the notion of
accuracy depends upon the specific problem in question.

A central aspect of quantum chemistry is the explicit or implicit determination of state-
specific potential energy surfaces (PES), predicting geometries, spectra and chemical reac-
tions. As these properties solely depend uponrelativeenergies accurate calculations need
to reproduce the shape of the exact PES. In fact most quantum chemical models are not
generally applicable to arbitrary sections of the PES. Properties, which primarily sample
regions of the electron density of little importance for theenergy require some care. The
requirements for their calculation may be drastically different from those for the energy.
Hyperpolarizabilities, which determine various nonlinear optical effects, for example de-
pend on the outer charge density distribution and are quite sensitive to dynamic electron
correlation effects.
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Being aware about the conceptual limitations of methods andto anticipate the appli-
cability of a given approach is essential. It is advisable tojudge the accuracy of quantum
chemical calculations not simply by comparison to experiment. Experimental data fre-
quently cannot be compared to quantum chemical results without further corrections for
effects not included in the (quantum chemical) model Hamiltonian and the processing of
the experimental raw data itself relies frequently on assumptions, which may or may not
hold accurately enough. This might render an interpretation of the deviation impossible.
It is quite tempting to adjust the various parameters of a quantum chemical calculation
such that the results finally agree with the available experimental data one has set out to
reproduce or to explain. This is - apart from possibly leading to entirely wrong conclu-
sions - entirely useless, since it prevents us from analysing the result and thereby attaining
a better understanding of the underlying problem beyond merely generating a collection of
numbers.

The preferred approach is to assess the quality of a calculation within the theoretical
approach. Comparison with experimental data follows as thesecond step. Constructing
series of calculations in order to detect or to eliminate possible sources of error as well
as using series of calculations of increasing accuracy for suitably chosen reference sys-
tems to calibrate the methods whenever necessary. Finally,extrapolation techniques may
prove helpful in order to overcome practical limitations associated with the wave function
expansion.

2 Basic Approximations

2.1 Hamiltonian

The standard molecular Hamiltonian used in electronic structure calculations in atomic
units contains the electronic kinetic energy�� , electron-electron repulsion��� , electron-
nuclei attraction��� and the nuclear-nuclear repulsion energy��� and runs
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denotes the nuclear charge,R and r are nuclear and electronic position vectors, re-
spectively. Summations run over all electrons (index� � � ) and nuclei (index� � � ). This
equation implies several simplifications: (i) the particles interact non-relativistically solely
through Coulombic interaction (ii) the (clamped-nucleus)Born-Oppenheimer Approxima-
tion and (iii) the particles are described as point charges neglecting the finite size of the
nuclei.

Relativistic contributions to the total energy, which scale as
�  !"	

with
"

the speed of
light (# �$%

a.u.), must be included for the heavier elements in at least some approximate
manner. The impact of spin-orbit coupling may be of similar importance as electron corre-
lation for the heavier elements and cannot be straightforwardly ignored (cf. Section 3.6).
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The Born-Oppenheimer approximation1, 2, sometimes referred to asadiabatic approx-
imation3, decouples electron motion from the motion of the nuclei. Itworks well wherever
the gradient of the electronic wave function with respect tothe nuclear coordinates is small.
This assumption may be violated close to avoided crossings between different electronic
states, where the characteristics of the participating states rapidly change. Proper treat-
ment of these regions, which are of great importance for the understanding of the dynam-
ics of photochemical reactions, invariably require the inclusion ofnon-adiabaticcoupling
terms4.

2.2 Wave Function Expansion

The eigenvalues and eigenfunctions of the time-independent Schrödinger equation�� � � �
(4)

are sought. As analytical solutions are unavailable exceptfor the one-electron case an
expansion in an N-particle basis set�� � offers a solution. For an initial trial wave function�� ���

, which depends on a set of parameters�� � the energy functional runs

�� ��� � 	 �� ��� �� � �� ���
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By virtue of the variation theorem the approximation
�� �� �

is an upper bound to the exact
energy of Eq. (4) and the wave function

�� �� �
will converge on average to the exact wave

function
�

. Using a linear expansion in
�

and making the energy stationary
�� �� � � 
�

� �� � (6)

with respect to
�

yields a generalized eigenvalue problem
�� � � 
�

(7)� �� � 	� � �� ��� 
 (8)
 �� � 	� � ��� 
 (9)
� �� and


 �� denote the hamiltonian and overlap matrix elements with respect to the N-
particle basis functions� � and�� . The Dirac notation implies	� � �� ��� 
 � � ��� ��� �� .
As the basis may be chosen orthonormal, the overlap matrix isreplaced by the unit matrix.
A complete N-particle basis set yields the exact solution ofEq. (4). However, such a basis
would be infinite in size and rather impractical to use.

Guidelines for the construction of the N-particle basis arethe efficient representation
of the N-particle space and the rapid evaluation of the respective matrix elements, i.e.
the computation of a vast number of multi-dimensional N-electron integrals appearing in
Eq. (8). Conventionally, the N-electron basis is constructed from antisymmetrized products
of orthonormal spinorbitals�� � ��� �, denoted Slater determinants�.

� � � � ��
�

�� � ��� � (10)
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The spinorbitals are a product of a spatial part��� � ��� � times a spin part� � �� � �. The spatial
part is expanded in linear combinations of atom-centered one-electron basis functions�� .
The favourable mathematical properties of Gaussian Type Orbitals (GTOs) for integral
evaluation make them the preferred choice for�� �� �.

� � � � � 
�
�� ��� ��� � � � �� �� � �� � (11)

�� �� � � ��� 	
� ��� �
�
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(12)

The major challenge is the evaluation of the two-electron integrals over GTOs (Eq. (13))
that finally occur as the basic building blocks of the matrix elements	� � �� ��� 
. ������� and������� indicate integrals over spatial orbitals and spinorbitals, respectively.
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Figure 1. Schematic construction of closed-shell ground-state (/0 ), singly (/12 ), doubly (/1324 ), triply (/13524 6 )

and quadruply (/135724 68 ) excited determinants.

Figure 1 schematically depicts the construction of the N-particle basis set. The molec-
ular orbital (MO) coefficients

�� � are usually obtained from Hartree-Fock (HF) or multi-
configurational self-consistent field (MCSCF) calculations. Whereas in the HF method�� ���

is expanded in a single Slater determinant the MCSCF method expands
�� �� �

into a
small expansion of usually less than 50000 terms (cf. Eq. (6)). In either caseall parameters
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�� � and
�� � are fully optimized. The MOs�� � are ordered according to their eigenvalues

(orbital energies� �). The ground (or reference) state is constructed by filling the energet-
ically lowest-lying orbitals with two electrons each (closed shell case). Singly, doubly,
triply and quadruply excited determinants are obtained by ”exciting” electrons from some
occupied to unoccupied orbitals. Continuing up to N-fold excitations generates the full
N-particle basis. Slater determinants are in general no eigenfunctions to

� 	
. However,

spin-adapted configurations (CSFs) may be constructed by taking the appropriate linear
combinations of Slater determinants.

The number of CSFs that can be constructed from� molecular orbitals and� electrons
subject to a spin-multiplicity of� � �!�

is given by5:

���	 � � 
 �� 
 �

� 
 �� � 
 � 
 �� � � � �� where� � �� 
 � � � �!�

(18)

Table 1 collects some representative numbers for the size ofa full N-particle basis for
singlet states (� � 


). The case� � � corresponds typically to basis sets used in HF
calculations whereas� � �� is about the minimum size for basis sets suitable for electron
correlation methods. Evidently, using the linear expansion of the wave function (Eq. (6)) in
terms of all possible CSFs in a given basis set��� (denoted full configuration interaction
(FCI)) is ruled out by thefactorial growth of the N-particle space, except for the very
smallest systems with at most 10 to 20 electrons in small basis sets. FCI calculations can
be carried out for expansion lengths beyond 1 billion terms6. The truncation of the one-
and N-particle basis are the most important errors in quantum chemical calculations.

2.3 Non-Dynamical Versus Dynamical Electron Correlation

Truncating the N-electron basis to a single determinant andvariational optimization of the
MO coefficients defines the HF method. Since the canonical HF orbitals form the basis for
most advanced electron correlation methods, the electron correlation energy is defined as
the difference between the exact non-relativistic energy at 0 K and its HF counterpart in a
completebasis�� �:

� ���� � � ����� � �� � ��
(19)

Table 1. Total size of the N-particle basis for singlet states as function of the number of electrons� and molecular

orbitals�: � 5�� � ��� � ��� �� !"!.

n=N n=2N
N � ��	 � ��	
4 20 336
8 1 764 866 320
12 226 512 3 405 278 800
16 34 763 300 16 226 413 117 200
20 5 924 217 936 86 391 974 193 251 584
24 1 081 724 803 600 494 452 245 428 329 102 096
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Figure 2. Schematic representation of basis set truncationeffects. The dotted line indicates the reference config-
uration space dimension and the dashed line the dimension ofthe FCI space. Given a fixed basis set��� various
methods are points along a vertical line.

� ����� is apart from one- and two-electron systems unknown and mustbe obtained
from experimental data corrected for relativistic effects. In some cases Quantum Monte
Carlo techniques may provide accurate reference data. Considering electron correlation as
the inadequacy of expanding the N-electron wave function ina single Slater determinant
(or a single CSF) two different effects can be identified.

The HF wave function by itself may be even qualitatively incorrect due to near-
degeneracy effects: low-lying configurations strongly interact with each other resulting
in large off-diagonal elements ofH (Eq. (7)), so that the wave function is ofmulti-configu-
rationalnature. This effect is termednon-dynamicalelectron correlation. It is frequently of
no importance for closed-shell molecules close to their equilibrium geometries but rapidly
gains importance for open-shell systems, in excited states, transition metal compounds,
for molecular systems at strained structures as well as a consequence of bond disrupture
or bond breaking. Computing chemical reaction paths accurately requires the balanced
(or unbiased) description of all intermediate structures so that the minimum configuration
space is the joined set of all near-degenerate configurations along the path. Treating sev-
eral electronic states on the same footing requires similarmeasures to ensure unbiased
treatment.

Dynamicalelectron correlation arises because - even though qualitatively correct - the
HF mean-field model cannot catch the instantaneous electron-electron interaction correctly.
The mathematical structure of the Hamiltonian enforces Katos cusp condition7: there is a
singularity in the Hamiltonian close to the coalescence point, where the interelectronic
distance of a pair of electrons��� � 


vanishes. To cancel this singularity the wave
function must contain linear terms��� so that there is a cusp at the coalescence point.
To describe this cusp in terms of products one-electron functions requires high-angular
momentum basis functions (angular correlation). Dynamical correlation effects may be
accounted for by a variety of methods. Single-reference methods imply a qualitatively
correct HF reference state whereas more general multi-reference methods can cope with
any multi-configurational reference wave function.
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Electron correlation methods aim at approximating the FCI result, i.e. expanding the
wave function in the full N-electron basis at a given one-electron basis set. Different
methods can be classified by the way the FCI space is truncated(cf. Figure 2).

2.4 One-Electron Basis Sets

For the ground state of Helium it has been empirically found that the energy contribution of
an individual orbital with quantum numbers�� �

solely depends upon the principal quan-
tum number. This finding suggests the construction of basis set hierarchies such that the
next level of accuracy should include all orbitals of the corresponding principal quantum
number. Thus, the minimum basis set e.g. for carbon amounts to the n=1,2 (2s1p). In-
cremented by one set of polarization functions n=3 (1s1p1d)gives the double zeta (DZ),
adding another set n=4 (1s1p1d1f) yields the triple zeta (TZ) basis etc. These atomic ba-
sis functions are built from contracted GTOs (CGTOs) i.e. fixed linear combinations of
primitive GTOs. So far only the number and angular momentum CGTOs is fixed. Con-
traction length, contraction coefficients and exponents ofthe individual primitive GTOs
are determined by minimizing the averaged energy over one orseveral atomic states at
HF (for minimum basis sets) and correlated level. Further optimization might also involve
diatomics especially of the heavier elements in order to improve the applicability to molec-
ular calculations. The exponents of the primitive GTOs are often chosen to (partially) form
an even-tempered series, i.e.

� � � � �
�
�� .

� �� 	���  � �!�"�#�$� � ���
segmented contraction general contraction

Figure 3. Segmented vs. generally contracted basis sets. All primitive GTOs�� belong to the same angular
momentum quantum number

. � �� � .� � ���.

There are two types of basis sets denoted generally contracted and segmented. Whereas
segmented basis sets aim at minimizing the contraction length and thus the number of prim-
itive integrals to evaluate, the general contractions exploit reusing intermediate quantities
for an entire contraction set at the expense of large contraction lengths. Most integral codes
favour one or the other basis set type.

Initially, the concept to add all basis functions belongingto a given principle number
simultaneously was taken advantage of by the atomic-natural orbital (ANO) basis sets8

They form generally contracted basis sets and the contraction coefficients are obtained as
the eigenvectors of the one-electron density matrix with the largest eigenvalues (occupation
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numbers). Thus given the number of primitives and their exponents the density matrix
averaged over several low-lying atomic states based on someelectron correlation method
in the primitive GTO basis is computed. The NOs with the highest occupation numbers
are used to define the contraction coefficients of the basis set. The ANO basis sets are now
available for almost the entire periodic table10, 9, 11.

The segmentedcorrelation consistent basis sets(cc-pVXZ,cc-pCVXZ, aug-cc-pVXZ,
X=D,T,Q,5,6) by Dunning and co-workers12, 13. They have been shown to form a balanced
sequence of increasing accuracy and have been often used forextrapolation of proper-
ties to the complete basis set (CBS) limit. Finally, there are segmented basis sets intro-
duced by Ahlrichs and co-workers14, 15, whose main emphasis was to provide compact
basis sets well-suited for correlated molecular calculations. Many basis sets are available
from http://www.emsl.pnl.gov/forms/basisform.html.

Obviously, the choice of the one-electron basis is crucial for the quality of a calculation.
Turning primarily to ”simple properties” such as geometries and vibrational frequencies,
their calculation at the uncorrelated (HF) level of theory can be carried out reasonably
accurate (vibrational frequencies with empirical scalingonly) with DZ quality basis sets.
Using electron correlation methods (including DFT!) requires usually at least TZ quality
basis sets. Turning to properties, which sample the electron density distribution in regions
spatially different from those relevant for the energy gives rise to more stringent basis set
requirements. Static electric multipole moments, sample	��



so that not only very diffuse

basis functions but also those ofhigher angular momentumare required. In addition the
result is sensitive to the level of dynamic electron correlation treatment. To describe Ry-
dberg states also calls for very diffuse basis functions, even to obtain qualitatively correct
results. Similarly, there is no point in correlating the non-valence electrons of a molecule
while using a standard polarized valence basis set, as they are insufficiently flexible to in-
corporate core and core-valence correlation at all. However, the core-electrons contribute
substantially to the correlation energy as they are spatially close to each other, thereby
forcing energetically favourable but (with inadequate basis sets) artificial valence electron
density distributions. In summary, correlating core electrons without basis sets augmented
by tight basis functions including those of high angular momentum, at best is a waste of
computer time and at worst deteriorates the quality of the calculation.

2.5 Electron Correlation Methods: N-Electron Basis Truncation

Electron correlation methods aim at approximating the exact solution within a given one-
electron basis set by truncating the full N-electron basis in some systematic way. Basically
three different methods with many individual variants are in use: configuration interaction,
perturbation theory and coupled-cluster methods.

The multi-reference configuration interaction (MRCI) method expands the wave func-
tion linearly in the N-electron basis. Truncation is achieved by defining a reference space
and restricting the configuration space to single and doubleexcitations out of each con-
figuration contained in the reference space, which is chosensuch as to deal with the non-
dynamical electron correlation.

�� �� � � � �	
�
"��	� � � �	� 
 
�� "�� � �� 
 ��
��

� ���� (20)
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There are several variants of this method. Internally contracted MRCI16 restricts the ref-
erence space to a single multi-configurational wave function thereby making the size of
the configuration space independent of the size of the reference configuration space. Other
variants treat only a part of the configuration space variationally while the remaining con-
figurations enter through perturbation theory17.

Perturbation theory splits the Hamilton operator into a zeroth order approximation and
a fluctuation potential. Non-degenerate (or single-reference) Møller-Plesset (MP) pertur-
bation theory uses the Fock operator as zeroth order approximation, thus all eigenvalues
and eigenvectors are available straight from the initial HFcalculation. Working in the
canonical HF orbital basis, energies up to third order are available straight away. The no-
tation 	
 �� �� 
 denotes the matrix element between the ground state determinant and any
excited determinant (solutions of

�
, eigenvalues

� �, orbital energies��).
� � � % 
 � � � � 
 � �
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Important variants thereof include CASPT218 using a single-reference multi-
configurational zeroth order wave function, which has been successfully applied to
a wide variety of ground and excited states19.

coupled-cluster (CC) methods invoke a non-linear expansion of the wave function.
��� � �	 � % � �	 �% (27)�	 � � 
 � 
 �� � 	 
 � � � �

�


�� %

�� 
� �
(28)

� � 
� �� (29)

���% � 
�� ��� � �� �% � 
�� ��� � �� (30)

�	�% � 
�� �� ����� � ���� �% � 
�� �� ����� � ���� (31)

The cluster operators�� are linear combinations of excitation operators� weighted with
cluster amplitudes

�
. Applied to a reference state (here a closed shell Slater determinant)
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they generate all� th excited Slater determinantes with respect to the reference state
� % .

Eq. (27) expands thus to
��� � �� 
 �� 
 �	 
 � 	� 
 ���	 
 � 		 
 �� 
 � � ��� % (32)

All these wave function based expansions - in principle - canbe improved systemati-
cally in order to approach the FCI limit: MRCI may either increase the excitation level or
enlarge the reference space. Perturbation theory can be continued up to high order and in
the coupled-cluster method the cluster operator (Eq. (29))maybe truncated at N�� excita-
tion level. As the MPn series may diverge, the coupled-cluster method is more expensive
but more reliable. A serious drawback of MPn and CC approaches is the limitation to
single reference cases.

Density functional theory is somewhat special as electron correlation and exchange are
treated through a more or less well-founded correlation-exchange functional of the one-
electron density. There is no direct way connecting wave function expansions with DFT.
Owing to the limited knowledge about the properties of theexactexchange-correlation
functional, there can be done little aboutsystematicimproving DFT towards the FCI limit.
In terms of computational efficiency DFT is by far superior toHartree-Fock and electron
correlation methods (maybe with exception oflocal MP220). Compared to electron corre-
lation methods, DFT results display a considerable spread in accuracy depending upon the
specific case as well as the utilized functional whereas theyare almost always superior to
HF.

3 Errors

3.1 Basis Set Truncation Errors

To this end we can define the apparent error as the difference between the true solution
of the electronic Schrödinger equation (corresponding tothe experimental value corrected
for non-BO effects and possibly relativistic corrections). This can further be subdivided
into the basis set error associated with the limited size of the 1-electron particle basis and
the n-electron error associated with the incompleteness ofthe n-electron basis. In the limit
of a complete basis set the basis set error vanishes and solely the n-electron error remains
denoted theintrinsic error of the corresponding model.

One-electron basis set truncation errors may be very large,especially if basis sets en-
tirely inadequate to the given problem or the desired accuracy are chosen. Under the as-
sumption, that non-dynamical electron correlation plays no role, good theoretical estimates

method pCVDZ pCVTZ pCVQZ pCV5Z pCV6Z 56-expln.��
��� ���
MP2 -382.7 -477.8 -510.7 -523.1 -528.7 -536.4
CCSD -387.8 -478.2 -507.1 -516.7 -520.6 -525.9
CCSD(T) -400.4 -498.0 -528.5 -538.7 -542.7 -548.3

Table 2. Recovered electron correlation in�
��

for �! at equilibrium distance�� �� � ��	 
���
� . Esti-

mated basis set limits: -537.2 (MP-R12), -526.2 (CCSD-R12), -548.2 (CCSD(T)-R12). Taken from Ref. 23. All
electrons correlated. 56-expln=(216 E(pCV6Z)-125 E(pCV5Z))/91.
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method pVDZ pVTZ pVQZ pV5Z 45 expln. est. intr. error
MP2 213.36 229.23 235.78 238.36 241.1 +12.7
MP3 191.31 205.76 212.14 214.31 216.6 -11.8
MP4 203.58 221.13 227.98 230.41 232.9 +4.5
CCSD 193.67 207.98 214.17 216.28 218.5 -9.9
CCSD(T) 200.69 216.70 223.17 225.42 227.8 -0.6
IMRCI 201.96 217.90 224.19 226.31 228.5 +0.1
IMRCI+Q 200.74 216.62 223.14 225.37 227.7 -0.7

Table 3. Computed Dissociation energy in kcal/mol for�! .

Experiment: 228.4 kcal/mol. 45-extrapolation=�!��� �� � �� ���	�� �� � 
� �
� � . Except extrapolation taken from

Ref. 24. Estimated intrinsic error taken as the difference between experimental value and 45-extrapolation.

of the CBS limit can be obtained from the so-called R12-methods, which expand the wave
functions explicitly including terms linear in R12. This allows for a more accurate de-
scription of the electron-electron cusp (Katos cusp condition). In particular the relatively
cheap MP-R12 method21, 22has been frequently used for benchmarking the CBS limit. Ta-
ble 2 demonstrates that only by employing very large basis sets up to including� functions
for the nitrogen molecule it is possible to recover more than98% of the correlation en-
ergy. Hence, only extrapolation to the basis set limit (cf. Section 4.1) is a practical way to
(almost) quantitatively take care of electron correlation. The differences in the estimated
basis set limits indicate that the impact of N-electron basis set truncation is of the order of
10�� � .

Systematic expansion of the N-electron basis towards the FCI limit is in principle pos-
sible by the MPn perturbation series or by coupled-cluster methods truncating the cluster
operator at higher and higher excitations. From the practical point of view either approach
is limited to rather small basis sets and small systems. Fortunately, energydifferencescon-
verge more rapidly. In fact, IMRCI+Q/IMRCI and CCSD(T) are almost equivalent whereas
CCSD is clearly insufficient and MPn displays an oscillatingbehaviour going from low to
higher order. Note, that even at the cc-pV5Z level the one-electron basis set error is about
2-3 kcal/mol.

3.2 Basis Set Superposition Error

The basis set superposition error (BSSE) is a spurious contribution to the interaction en-
ergy arising form the improved description of each fragmentin the total basis as compared
to the fragment basis alone. It is ultimately a consequence of the one-electron basis set
incompleteness. Evidently, the BSSE error will vanish asymptotically as the complete one-
electron basis is approached. BSSE appears whenever the molecular geometry is changed
and is particularly important for the computation of interaction energies. Without correc-
tion an artificial increased binding energy is obtained. In particular when using modest
basis sets, BSSE can result in substantial distortions of the PES.

A conceptually simple method to account for BSSE is the counterpoise correction
method25 in which the energies of the fragments are computed in the full basis of the
entire complex and subtracted from the energy of the entire system. Although there is
some debate about its accuracy it is the procedure of choice to account for BSSE (cf. a
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review on counterpoise theory26).
Investigations on N	 indicate a BSSE error at experimental equilibrium distanceof

about 0.8 kcal/mol for TZ and about 0.4 kcal/mol for QZ basis sets. Accurate extrapola-
tion to the complete basis set limit therefore must correct for BSSE prior to extrapolation.
BSSE, however, also can be viewed as a basis set incompleteness indicator and thus used
to correct the binding energy by adding anempirical fraction of the BSSE to correct for
basis set incompleteness.

Figure 4 illustrates the BSSE error for Ar in presence of an Arghost basis using a
variety of Dunnings correlation consistent basis sets at the CISD level of theory. BSSE is
moderately method dependent but the trends discussed here hold in general. Increasing the
cardinal number of a given basis reduces the BSSE error substantially. Valence electron
correlation basis sets and core valence basis sets show a similar BSSE error. Adding diffuse
functions strongly increases the BSSE and it vanishes much more slowly with increasing
distance to the ghost basis. As a note of caution, correlating the core electrons in a valence
basis almost doubles the BSSE error (without improving the results). Although the BSSE
error is somewhat method-dependent the conclusions are generally applicable.

The argon dimer forms a van-der-Waals complex kept stable solely by dispersion,
which is solely an dynamic electron correlation effect. To properly describe such kind
of complexes several sets of diffuse functions are required. At the experimental equilib-
rium distance of��	 the BSSE correction (twice the Ar-X interaction energy) amounts to
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about 250�� �, i.e. about 50% overbinding for��	 due to BSSE. As increasing the level
of electron correlation treatment increases the well depthwhile increasing the basis set
size on the one hand side improves the description of electron correlation effects and on
the other hand side decreases the well depth due to reduced BSSE error, one can easily be
trapped by error compensation effects. An MP2 calculation with the aug-cc-pVTZ basis
accidentally agrees quite well with the experimental well depth.

3.3 Core-Core and Core-Valence Electron Correlation

Core-core (CC) correlation are denoted electron correlation effects solely restricted to the
core electrons while core-valence (CV) correlation describes the relaxation of the core elec-
trons upon valence electron correlation and vice versa. Although core and core-valence
electron correlation in absolute terms contributes largely to the total correlation energy
(� 	: � ������� � �
��� � �� ������ � � ����� �23), its differential effects on the electron dis-
tribution of the valence shells are modest. For compounds offirst and second row ele-
ments the effects are fairly small. The dissociation energyof � 	 e.g. changes by about
1.5 kcal/mol27, and the depth of the van-der-Waals minimum for��	 is affected by about
4�� �28 corresponding to about 1% of the valence electron correlation contribution. Hence,
for the light atoms CC and CV correlation effects need to be considered for high-accuracy
calculations, only.

Note, that accounting for CC and CV correlation requires large basis sets and the treat-
ment of many electrons rendering calculations demanding. However, even though solely
correlating the valence electrons, the basis set must contain all AOs representing the inner-
shell electrons. This sparked the idea of representing the inner-shell electrons by a suit-
ably parametrized potential as to reduce the basis set size denoted effective core potential
(ECPs) in contrast to all-electron methods. ECPs are applicable if the relaxation of the
core electrons upon chemical binding or valence electron correlation can be neglected. Of
course ECPs of neighbouring atoms must not overlap.

There are two different classes of ECPs: the pseudo orbital type29, 30, which replaces
the valence orbitals by nodeless pseudo-potentials resembling the HF valence orbitals as
much as possible (in the sense of shape and orbital energies)and the core electrons by a
potential (containing angular momentum projection operators� � � ��
 	� �) of the form

� �
�
� � �� �

�
� 


�
�
�


��%
� � �� �� � (33)

where� � �
is the maximum angular momentum of the core electrons. The potentials� � �� � and pseudo orbitals are fitted to an analytic form involving Gaussians. The ab initio
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model potentials (AIMP) method31, 32uses valence orbitals of the correct nodal structure.

� � 
�
� �	 �

	� 
 
�
� � ��� ���� � 
 � ���� � ��� 
 � ����� ��� 
 � � 
 
��� � �

��� 
 ��� (34)

� ����� ��� � � � ������� � 
 � ���� �� 	


� 
� ��� # 

�

� � ���� ��� ���� �
	� �!�� (35)

� ����� ��� � � ��� � �� 	


� � � ��� �
non-local representation (36)

�
� � ���� �� 	


� ��� �� � 
 	� � � (37)

Partitioning the orbital space into core and valence orbitals the effective core potential is
derived by a local representation of the Coulomb potential and a spectral representation
of the exchange potential, i.e. the core electrons are replaced by the HF potential. In
order to ensure the orthogonality of core and valence orbitals and to avoid collapsing the
valence orbitals into the core space, a level shifter is added shifting the core orbitals to
positive energies, so that they give a positive contribution to the valence orbital energy
unless the valence orbitals are orthogonal to the core orbitals. The specification of AIMPs
involves apart from the local and non-local potential expansions a basis set expansion of
the core orbitals, thereby allowing to combine AIMPs with arbitrary basis sets. The quality
of AIMPs depends upon the quality of the reference calculation. However, to achieve the
correct nodal structure of the valence orbitals the valencebasis sets are larger than those
required for the pseudo-orbital method and include tight GTOs.

3.4 Size-Extensivity Errors

Although the general approaches towards the inclusion of dynamical electron correlation
discussed so far yield identical results going to infinite order and infinite excitation, respec-
tively, truncated methods display shortcomings.

An important issue is the correct scaling of the correlationenergy with the number
of particles. The correlation energy of a system consistingof n identical non-interacting
molecules should scale linearly with number of independentsubsystems n. CC and MPn in
fact give the correct answer. This is not generally true for truncated CI methods. A related
property is size-consistency, i.e. the energy of two noninteracting systems must be the sum
of the individual components.

��� ���� � 
 � � �� 
 �� (38)

A method may be size-extensive but not size-consistent. Hence, it is desirable to apply
a size-extensive electron correlation method to a size-consistent reference wave function.
Since RHF is not size-consistent, correlation treatments based upon RHF reference wave
function may not necessarily be size-consistent at the correlated level either.

The lack of size-extensivity of truncated CI in fact rendersit useless for systems con-
taining many electrons, correct relative energies requirean unbiased treatment of electron
correlation throughout electronic states and molecular configurations. Owing to the lack of
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generally applicable methods for multi-configurational reference wave functions, approxi-
mately size-extensive MRCI methods have been developed. The widely used a posteriori
Davidson correction scales the computed correlation energy with the weight of the refer-
ence configuration in the final wave function

��� �� ����� � �� � � % � �� � "	% � (39)

where
� % denotes the energy of the reference wave function and

"	% is the weight of the re-
laxed reference wave function in the final wave function. Alternatively, the size-extensivity
of the MRCI method may be approximately restored by optimizing the renormalized func-
tional, where

� �� is the component of the wave function not included in the reference
space (intermediate normalization).

� ���� � 	� �� � � % ��

� 
 � 	� �� �� �� 
 (40)

The scaling factor� depends upon the number of correlated electrons� � and defines
various approximations such as MRAQCC33 (� � � � �� ���	 �� ��

		� � �� �

�
�	 ) and MRACPF34

(� � 	� � ). � � �
corresponds to MRCI.

Whereas a MRCI treatment is variational and does not divergeeven though the ref-
erence space might be inadequate, this does not apply to the size-extensivity corrected
variants. They depend upon the proper choice of the reference space and similar to MPn
intruder states and near-degeneracies with configurationsnot included in the reference
space produces artifacts. Hence, for scanning large portions of the potential energy surface
MRCI though suffering from the lack of size-extensivity is more robust than MRAQCC or
MRACPF.

Whereas CCSD is size-consistent, i.e. the interaction potential goes for large distances
to zero, this does neither apply to CISD nor to its size-extensivity corrected counterparts
(Figure 5, left) although it may be small in some cases. However, using the supermolecule
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approach amounts to shifting the zero point of the potentialto the Ar-Ar potential at
large distances. Since the��	 case is an ideal single reference case the degree of size-
extensivity can be approximately judged by the difference between the CCSD and the
AQCC/ACPF/CISD curves (Figure 5, right).

3.5 Orbital Resolution

The separation of MO coefficient optimization (HF or MCSCF) from the dynamical elec-
tron correlation treatment introduces a dependence upon the MO basis. The problem of
orbital resolution is connected to the partitioning of the MO space. Whereas the HF energy
is invariant to unitary transformation among the occupied or unoccupied orbitals this does
not apply to electron correlation methods: Møller-Plessetperturbation theory requires the
canonical HF orbitals, CASSCF calculations are invariant only with respect to rotations
among frozen, inactive, active and virtual orbitals etc. Whereas some of the orbital de-
pendencies (such as for MP2) are rather related to the implementation, others are inherent
due to the choice of the method-dependent configuration space selection. Whenever the
MO basis is partially invariant to orbital rotations in the MO optimization step they need
to be ”resolved” by solving an eigenvalue problem of some operator with non-degenerate
eigenvalues within the invariant subspace such as a Fock matrix or the one-electron den-
sity matrix. However, accidental degeneracies may occur and if the degenerate orbitals in
the subsequent electron correlation treatment are split into different orbital groups spuri-
ous results (such as spikes on a PES) may occur. The remedy is to use a different orbital
resolution operator.

Regarding the computation of excitation energies by choosing the MO basis from a
state-specific orbital optimization introduces a bias in favour of this state in the subsequent
dynamical electron correlation treatment. This can be observed as a systematic error in the
excitation energies. For this reason commonly state-averaged orbitals are employed, that is
the energy functional that is minimized during orbital optimization is a weighted average
over all states of interest.

Since the ground and excited state PES are quite different atdifferent levels of theory,
at certain molecular configurations we are close to avoided crossings at one level of theory
while far away from it at a different level. If this occurs forthe orbital optimization step
in contrast to the inclusion of dynamical electron correlation, the MO basis may be even
qualitatively completely wrong thereby reducing the accuracy of the subsequent electron
correlation treatment drastically. To overcome this bias by inclusion of a sufficiently large
configuration space requires substantial effort if at all successful.

3.6 Relativistic Effects

Relativistic effects can be defined as anything arising fromthe finite speed of light (
" #�$%

au) as compared to
" � 
 for the non-relativistic case. The most fundamental starting

point for molecular many electron relativistic treatmentsis the Dirac-Breit Hamiltonian� ��
with possibly additional quantum electrodynamical corrections.� �� � � �� 
 � � � ��� (41)� 
�

�
� ����� 
 
���

�!
��� 
 � � ���� 
 � ������ (42)
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� ��
can be viewed as the Dirac-Coulomb Hamiltonian

� ��
plus perturbative treatment

of two-electron relativistic corrections (Gaunt term and retarded Hamiltonian or derived
corrections from QED).

� ��
treats one-electron relativistic effects exactly in termsof

a linear combination of N one-electron Dirac Hamiltonians
�
� ���� while retaining the

non-relativistic electron-electron repulsion term. The relativistic four-component single-
particle wave functions can be decomposed into two two-components termed ”large” and
”small”. These terms are related by the kinetic energy balance condition. In contrast to
the non-relativistic case the Dirac-Breit Hamiltonian cannot be rigorously derived and is
not fully Lorentz invariant so that purists may consider a relativist theory of many-electron
systems not yet available.

The spectrum of the Dirac-Breit Hamiltonian is qualitatively characterized by having
the bound states bracketed by continuum states at

��"	 � � � �
 and
 � � � 

.

The presence of a negative continuum leads to the variational collapse (Brown-Ravenhall
disease). Either by imposing appropriate boundary conditions or by modifying the Hamil-
tonian such as to project out the undesired negative continuum prevents the variational
collapse (no-pair Hamiltonian35). Once the appropriate relativistic Hamiltonian is cho-
sen in principle the standard non-relativistic methods canbe applied analogously except
for working with a four-component wave function. Expandingthe large and small com-
ponents in atom-centered basis sets requires very large basis sets as to fullfill the kinetic
energy balance condition. This puts serious constraints upon the range of applicability so
that the fully relativistic approach is often simplified by quasirelativistic approximations or
the use of pseudopotentials especially since we have to consider electron correlation and
relativistic effects simultaneously.

In the non-relativistic limit the small component vanishesand only the large compo-
nent is retained. Separating large and small components by unitary transformations of
the relativistic Hamiltonian and truncating the resultingHamiltonian at order

"
�
	

yields
the Pauli and Breit-Pauli two-component form starting from

� ��
and

� ��
, respectively.

Eliminating magnetic interactions (spin-orbit coupling)only the mass-velocity correction
and the Darwin term are retained.�
 ���� �� � � �

�"	 
�
�  � (43)

�� ��� �� � ��"	 
��
���� (44)

(45)

Choosing instead the four-component no-pair Hamiltonian35 as starting point and applying
the Douglas-Kroll transformation36 finally yields the spin-free relativistic one-component
Douglas-Kroll Hamiltonian. The latter is variationally stable and can be employed in all-
electron treatments. All-electron one-component treatments of systems containing many
heavy atoms is computationally demanding due to the large size of relativistic basis sets
although much cheaper than their fully relativistic counterparts. Relativistic ECPs whether
of pseudopotential or AIMP type are usually derived from relativistic Cowan-Griffin37 or
Douglas-Kroll all-electron calculations. The parametrization of RECPs may also accom-
modate error compensation such as deficiencies in the reference data and inappropriate
basis sets. Due to this empirical element they should be usedonly in combination with
the valence basis set used for parametrization. AIMPs on theother hand may be com-
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bined with any basis set sufficiently flexible to represent the nodal structure of the valence
orbitals.

The main consequences of relativistic effects are (i) radial contraction of all s and� ��	 atomic orbitals as well as the inner-shell
� ��	 AOs (ii) the spin-orbit splitting for

all AOs with non-vanishing orbital angular momentum and (iii) the radial expansion and
energetic destabilization of most d and all f type AOs38. Relativistic effects influence
the chemistry of 5d block elements, lanthanoids and in particular the actinoids owing to
relativistic changes to the valence shell structure. This makes them potentially offering
a very rich not yet explored chemistry. Particular large effects are found for gold and
gold chemistry (aurophilic attraction)39. Similar applies to strong closed-shell interactions,
which are primarily a consequence of relativistic effects40.

4 Extrapolation Schemes

4.1 One-Electron Basis Set Extrapolation

Of particular importance is the possibility to extrapolateto the complete basis set limit.
This amounts to extrapolating horizontally to the right in Figure 2. To allow for extrapo-
lation schemes it is mandatory to have a hierarchical sequence of basis sets that converge
uniformly to the CBS limit. The cc-pVXZ, cc-pCVXZ basis setsform such a sequence.
Since the HF energy and the correlation energy have different convergence characteristics
separate extrapolation of each term is important.

For the correlation energy there is some theoretical motivation on the functional form
establishing a relationship between maximum angular momentum of the basis set and the
correlation energy

�� ���� of He at the CI level and for many-electron atoms at the MP2
level. The asymptotic behaviour of the contribution by all orbitals of angular momentum

�
by a basis saturated individually for each

�
is given by

�� ���� �� � � �� 
 �� �� 
(46)

Given a (saturated) basis set with maximum quantum number
�
, the correlation energy is

of the form
�� ���� � �� ���� �� 
 � �� 
 ��

��
(47)

Identifying� 
 �
with the cardinal number� (D=2,T=3,...) of the cc basis sets and using

a two-point extrapolation with two successive basis sets weobtain

�� ���� �� � �� ���� �� � � �� 
 ��� � �� ���� �� � �
�� 
 ��� � � � (48)

It has been empirically found, that the most reliable results are obtained by two-point fits
using the two largest practical basis sets23. Comparison with correlated calculations using
R12 methods indicate the correct asymptotic basis set limitfor the correlation energy42

The CBS limit of the correlation energy should be independent of the chosen pair of basis
sets. In practice these authors have found that extrapolations involving the X=D basis
sets are inferior. As the number of basis functions� in the basis sets grow as� �, the
correlation energy scales as� ��!� �

and the computational effort for integral evaluation
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scales as� ��  �
so that the relation between correlation energy and CPU timeconsumption

is
�� ���� # "�

�
 ��� .

The extrapolation of the HF energy to the CBS limit has no theoretical motivation.
Most popular are the exponential and power forms, e.g.

�� � � �� � �� 
 � �
�

�

(49)�� � � �� � �� 
 �� �



(50)

(51)

Apart from the general finding that the HF energy converges much more rapidly than the
correlation energy with cardinal number X, conclusions areambiguous about the extrapo-
lation error43.

Application of this extrapolation formula to reaction enthalpies , weak interactions44,
spectroscopic constants and dipole moments45 have been encouraging and a statistical
analysis of the extrapolated data to experimental as well asreference data based on the
MP-R1221, 22 and the CC-R12 method41 indicate thatchemical accuracy, i.e. # �� 
!� �

�
can be achieved already at the 34-extrapolation level. 23-extrapolations, though already
largely improving the quality of the results compared to theraw data, are far from chemi-
cal accuracy. Similar applies to the raw data itself even forlarge basis sets. The exponential
extrapolation advocated by Dunning and coworkers tends to overestimate the rate of con-
vergence.

�� ����� � � ����� 
 �� �� (52)

It is somewhat problematic that a good estimate of the CBS limit requires large basis
sets thereby excluding application to large molecules. Truhlar et. al. extrapolated HF and
correlation energies by the form46

�� � � �� � �� 
 �� � � �



(53)� ���� � � ���� �� 
 � ����� �
�

(54)

(55)

The constants
�

and � are considered universal and have been obtained by fitting the
X=D,T energies to the CBS limits estimated by larger efforts. This method allows to
extrapolate to the CBS limit using relatively small basis sets47. However, since double zeta
type basis sets are known to be insufficient for electron correlation, the parametrization
must take care of it, which adds an element of statistical uncertainty as error compensation
is implicitly exploited, which may or may not work on systemsnot included in the test
suite used for parametrization.

In order to derive a basis set convergence for molecular properties, which may be
largely different from the electronic energy, one starts from an expression involving the
energy derivative of the Hamiltonian� �� � � � �� � 
� 
 �� (56)

so that a given property is associated with some perturbation of the Hamiltonian. Upon
expanding the correlation energy as

� ����� �� �
�

��%

�


��%

� ��	� ��� 
 � ��
(57)
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the coefficients
� ��	� govern the convergence of the kth order property. It is a priori not

possible to predict the relative importance of the terms scaling as� �� , so that asymptotic
scaling may not be achieved with basis sets of cardinal numbers, for which it is possible to
perform calculations and each property requires careful investigations.

A note of caution must be supplied as well: the extrapolations solely models the errors
associated with the expansion of the electron-electron cusp. Other errors such as basis set
superposition error, size-extensivity error or the use of an ill-chosen basis (e.g. lack of
diffuse basis functions for multipole moments) must be corrected for separately. Secondly,
it is necessary to point out that these extrapolation schemes have been used mostly in
conjunction with single-reference systems at the MP or CC level of theory. Since the
above scheme considers dynamic electron correlation only,it is tempting to extend it to
multi-reference cases by defining the electron correlationenergy with respect to energy of
the reference wave function. However, the rather foggy distinction between dynamic and
non-dynamic electron correlation and thereby its dependence upon reference configuration
space definition, suggests a cautious attitude.

4.2 N-Electron Basis Set Extrapolation

Retaining a given one-electron basis somewhat similar extrapolations to the FCI limit,
i.e. in vertical direction in Figure 2 would be desirable. Similar to the hierarchical one-
electron basis sets, a systematic, uniform improvement of the N-electron basis is manda-
tory. Møller-Plesset perturbation series can be ruled out due to the tendency to diverge
at high order without having an a priori error indicator at hand. Truncated approximately
size-extensive MRCI cannot be easily extended in practicalterms. Thus, coupled-cluster
methods seem to provide the only possible route to this task.Truncating the cluster opera-
tor � heavily such as e.g. in CCD, CC2 may yield extrapolations largely benefitting from
error compensation (such as e.g. MP2). CCSD(T) and CCSDT, however, already come
quite close to the FCI limit and continuing to higher order cluster expansions may allow
accurate extrapolations. Due to the introduction of new techniques CC codes capable of
going to high order truncations of the cluster operator may become available in near future.

4.3 Gaussian-n (Gn) Models

In actual problems, however, the ultimate aim is to extrapolate to the FCI result at CBS
limit (i.e. the exact result) including corrections for zero-point vibration and relativistic
effects as to model the experimental situation, i.e. extrapolation to the upper right corner
of Figure 2. Although effects due to one- and N-electron basis set truncation are in general
non-additive, extrapolation models can be devised, which assume the additivity of certain
contributions. As the model is devised such as to reproduce the data (energies, ionization
potentials, electron affinities, proton affinities) of a test suite of molecules, by virtue of
the choice of basis sets and level of correlation treatment,error compensation is implicitly
made use of. The G3 model50 uses a HF/6-31G(d) optimized equilibrium structure and
scaled harmonic frequencies (scale factor 0.8929) to compute the zero-point energy. The
geometry is refined at the all-electron MP2/6-31G(d) level.A series of single-point calcu-
lations is carried out at this molecular geometry to estimate the correlation energy starting
with an MP4/6-31G(d) calculation as reference point. Corrections are computed for diffuse
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functions, higher polarization functions, correlation contributions beyond MP4 through
quadratic CI (a CC variant) and corrections for basis set effects and non-additivity of dif-
fuse vs. polarization function extensions computed at all-electron MP2 level. Spin-orbit
corrections for atomic species taken from experiment or accurate theoretical calculations
are added along with the zero point energy. Finally, so-called higher level corrections - a
parametrized expression depending upon the number of valence electron pairs optimized
to reproduce the test suite results - are added. Average deviations for energies, ionization
potentials, electron affinities, proton affinities are between 4 and 8 kJ/mol. The Gn mod-
els (n=1,2,3)48–50 are available for first and second row elements, only. Moreover, due to
assuming additivity for various contributions and parametrized higher level correction this
model is likely to benefit largely from error compensation, so that it would be difficult to
extend it to the entire periodic table. There are also variants G2(MP2)51 and G3(MP2)52,
which estimate basis set effects at MP2 level. The associated computational effort goes
as G3(MP2)�G2(MP2)�G3�G252. Note in particular, that the Gn methods are tied to
certain basis sets and targets, for which these basis sets are inadequate will invariably lead
to unreliable results.

5 Calibration and Reference Data

A remarkable side effect of extrapolation schemes parametrized to fit experimental data
(thereby relying on error compensation) is the availability of extensive test suites of
molecules, for which reliable experimental data or accurate data from other sources ex-
ist. This includes e.g. the G(n) test sets49 . There are many such reference data concerning
a variety of properties frequently used for parametrization of density functionals. Although
the agreement with the reference data may be stunning regarding the comparatively small
effort, they constitute unbounded extrapolation for systems not included in the test suite.
In addition error estimates are unavailable as the impliciterror compensation may add up
effects of opposite sign, which in turn depend upon the system in question. Large discrep-
ancies between such extrapolations and the experimental data may indicate experimental
errors as well as a failure of the extrapolation procedure aswell.

More reliable calibration procedures avoid tying themselves to experimental data but
rather invoke a sequence of calculations of increasing accuracy in terms of one- and N-
electron basis sets, chosen to allow separating the variouserrors and judging to what extent
additivity is a safe assumption.

A considerable problem associated with quantum chemical calculation comprises the
decision whether a given method is applicable to a given problem. In many cases there
is no simple a priori yes/no answer to the problem but insteada series of test calculations
is required. Solely comparing the computed results with some experimental or otherwise
derived reference data is frequently of little help, since we cannot distinguish between er-
ror compensation and correct results. In other words even despite of good agreement with
reference data, we cannot connect it to the parameters determining the outcome of the
quantum chemical calculations. In addition, we face the problem of having either no ref-
erence data at hand or the derivation of the reference data themselves relied on theoretical
models that may not be appropriate. Thus multiple sources oferror generally hamper any
reasonable interpretation of the comparison.

Therefore, a generally profitable approach is to performseriesof quantum chemical

21



calculations, which are set up such as to deduce the effect ofa single source of error as
accurately as possible. Since it is not save to assume straightforwardly the additivity of
different error sources calibration or benchmarking certain sources of error against a judi-
cial chosen reference is of great value for the understanding on the properties of quantum
chemical methods. In particular systematic investigations on the impact of certain param-
eters, provide a considerable insight into the methods and are to some extent transferable.

Of crucial importance is to disentangle the one-electron basis set truncation error from
the intrinsic (i.e. systematic) error of a given method. Since it is usually not possible
to repeat extensive calibration calculations for large molecules, it is sensible to define a
set of representative reference molecules. Setting up a series of calculations we aim at
elucidating the intrinsic (or systematic) error of quantumchemical methods with respect to
the desired property. Provided, the reference set was chosen appropriately, the results will
be mostly transferable to the larger systems.

Of particular value are benchmarks probing the full N-electron basis set limit within a
given (incomplete) one-electron basis. Here FCI calculations are to be mentioned in the
first place - as they are exact within the given one-electron basis set, which should be of
double zeta if possible triple zeta quality for meaningful comparisons. Second to it are
coupled-cluster techniques including quadruple or higherexcitations in particular the R12
variants, which converge rapidly to the one-electron basisset limit. At least for true single-
reference cases they practically reproduce the FCI data . For the general case and small
molecules size-extensivity corrected MR-SDCI such as MR-AQCC and MR-ACPF may
provide reference data. Often it is necessary to extrapolate to the CBS limit in the course
of the analysis.

5.1 Error Indicators

Hence, scrutinizing solely the final results of a series of calculations will indicate the
non-applicability of a given method by divergence or convergence to different method-
dependent limits. To understand the failure of a method requires to verify whether the
basic assumptions of the method hold for the specific case.

Provided the MOs are obtained from a qualitatively correct SCF calculation it is still the
question for diagnostics on the applicability of the method. In case of CI one can simply
examine the weight of the reference wave function: if configurations with large weights ap-
pear from outside the reference space, the reference space must be appropriately adjusted.
For Coupled-Cluster methods commonly the�� diagnostic is used, which amounts to the
scaled norm of the single excitation cluster amplitudes. The reasoning for the choice of
this indicator is that the single excitations reflect orbital bias best. CCSD calculations with�� � 
 �
�

call for caution; inclusion of higher excitations will increase the robustness of
the CC treatment. Møller-Plesset perturbation theory is less effective. Looking at the norm
of correction vector and energy of MP2 solely may erroneously indicate applicability. In-
cluding MP3 and monitoring the change in correlation energyincrement and norm of the
correction vector is more sensitive and more representative of the convergence of the MPn
series. The approximately size-extensively corrected MRCI functionals such as MRACPF
and MRAQCC are also fairly sensitive to intruder states, which in serious cases may force
them to diverge (this depends upon the wave function optimization scheme).

Finally, Figure 6 displays the characteristic behaviour ofvarious standard techniques
on the dissociation of the N	 molecule. Note, that methods relying on the closed shell
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and

bond length 1.074̊A.

HF reference (MP2, CCSD, CCSD(T)) fail badly as the RHF reference performs poorly.
Methods relying on an appropriate zeroth order MCSCF reference wave functions (MR-
CISD, MRAQCC, CASPT2) describe the dissociation qualitatively correct.

6 Summary

This brief survey has described the most relevant ingredients and practical error sources in
quantum chemical (cluster) calculations using standard quantum chemical methods such as
HF, MCSCF, perturbation theory, coupled-cluster methods and configuration interaction.
It has been pointed out that the most important error sourcesare, apart from using a single-
reference method in a multi-reference case, the choice of one- and N-electron basis set.
The concept of non-dynamical versus dynamical electron correlation has been explained.
The molecular orbital basis may give rise to a bias in favour of one state or be even quali-
tatively completely inadequate for a given purpose. Improving the MO basis is much more
important than high-level electron correlation treatment. Orbital rotations mixing MOs that
are treated on a different footing in the dynamical correlation treatment lead to artifacts.
Relativistic effects are important for the chemistry of theheavy elements. However, even
for the second and third-row elements relativistic effectshave to be considered for highly
accurate calculations. Highly accurate data can be obtained only from extrapolations to

23



the CBS limit, high-level electron correlation treatment and elimination of size-extensivity
and BSSE errors.

Cheap extrapolation models aiming at the applicability to awide range of systems
almost invariably contain an element of statistics, which ties the model explicitly and/or
implicitly to a set of reference data thereby benefitting from error compensation.

A critical attitude towards the quality of a calculation is very beneficial. Decomposition
of the total error into its various sources and calibration of some suitably chosen reference
systems should always be taken into account whenever there is some fundamental doubt
about the results given the required level of accuracy.
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