000050874 001__ 50874
000050874 005__ 20180211182108.0
000050874 0247_ $$2DOI$$a10.1016/j.geoderma.2005.05.008
000050874 0247_ $$2WOS$$aWOS:000236740900017
000050874 037__ $$aPreJuSER-50874
000050874 041__ $$aeng
000050874 082__ $$a550
000050874 084__ $$2WoS$$aSoil Science
000050874 1001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b0$$uFZJ
000050874 245__ $$aGeostatistical co-regionalization of soil hydraulic properties in a micro-scale catchment using terrain attributes
000050874 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2006
000050874 300__ $$a206 - 221
000050874 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000050874 3367_ $$2DataCite$$aOutput Types/Journal article
000050874 3367_ $$00$$2EndNote$$aJournal Article
000050874 3367_ $$2BibTeX$$aARTICLE
000050874 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000050874 3367_ $$2DRIVER$$aarticle
000050874 440_0 $$08464$$aGeoderma$$v132$$x0016-7061
000050874 500__ $$aRecord converted from VDB: 12.11.2012
000050874 520__ $$aAny effort of distributed hydrological modeling requires the spatially distributed input of soil hydraulic properties and soil thickness. Most of the hydrological models are sensitive concerning these soil properties, thus the use of point measurements and co-variables should be optimized for a most accurate spatial prediction. During this study, we focus on the use of terrain attributes as co-variables. In order to determine the dependencies between the soil properties and topography, we derived 17 terrain attributes for a small rural catchment (28.6 ha). Correlation statistics between these terrain attributes and soil hydraulic properties calculated from measured grain size distribution and organic carbon content with pedo-transfer functions were used to identify terrain attributes as co-variables for the spatial prediction of the soil properties. We detected in particular for the following terrain attributes a high prediction potential for soil properties: relative elevation, slope of the catchment area, radiation angle and morphometric units such as slope elements. We also compared the performance of multiple regression, ordinary kriging, external drift kriging and regression kriging model C to estimate the spatial distribution of topsoil and subsoil hydraulic properties and horizon thickness. The prediction errors for the spatial structure of soil hydraulic properties according to Mualem/Van Genuchten and horizon thickness were quantified by a cross validation procedure. We determined the regression kriging model C as the most appropriate method with, on average, the smallest prediction errors and because the resulting spatial structure corresponds to recent models of soil properties spatial structure. Compared to ordinary kriging without covariables, the spatial prediction of soil properties could be improved with up to 15% by using terrain attributes as co-variables. (c) 2005 Elsevier B.V. All rights reserved.
000050874 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000050874 588__ $$aDataset connected to Web of Science
000050874 650_7 $$2WoSType$$aJ
000050874 65320 $$2Author$$aDEM
000050874 65320 $$2Author$$akriging
000050874 65320 $$2Author$$aPTF
000050874 65320 $$2Author$$ainterpolation
000050874 65320 $$2Author$$asoil physical properties
000050874 65320 $$2Author$$aspatial distribution
000050874 7001_ $$0P:(DE-HGF)0$$aDiekkrüger, B.$$b1
000050874 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b2$$uFZJ
000050874 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2005.05.008$$gVol. 132, p. 206 - 221$$p206 - 221$$q132<206 - 221$$tGeoderma$$v132$$x0016-7061$$y2006
000050874 8567_ $$uhttp://dx.doi.org/10.1016/j.geoderma.2005.05.008
000050874 909CO $$ooai:juser.fz-juelich.de:50874$$pVDB
000050874 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000050874 9141_ $$y2006
000050874 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000050874 9201_ $$0I:(DE-Juel1)VDB50$$d31.12.2006$$gICG$$kICG-IV$$lAgrosphäre$$x0
000050874 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x1
000050874 970__ $$aVDB:(DE-Juel1)79700
000050874 980__ $$aVDB
000050874 980__ $$aConvertedRecord
000050874 980__ $$ajournal
000050874 980__ $$aI:(DE-Juel1)IBG-3-20101118
000050874 980__ $$aI:(DE-82)080011_20140620
000050874 980__ $$aUNRESTRICTED
000050874 981__ $$aI:(DE-Juel1)IBG-3-20101118
000050874 981__ $$aI:(DE-Juel1)VDB1047