001     5090
005     20180208215332.0
024 7 _ |2 DOI
|a 10.1016/j.cageo.2008.07.004
024 7 _ |2 WOS
|a WOS:000266544700022
037 _ _ |a PreJuSER-5090
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Computer Science, Interdisciplinary Applications
084 _ _ |2 WoS
|a Geosciences, Multidisciplinary
100 1 _ |a Canty, M. J.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB4989
245 _ _ |a Boosting a Fast Neural Network for Supervised Land Cover Classification
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2009
300 _ _ |a 1080 - 1295
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Computers & Geosciences
|x 0098-3004
|0 19264
|y 6
|v 35
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a It is demonstrated that the use of an ensemble of neural networks for routine land cover classification of multispectral satellite data can lead to a significant improvement in classification accuracy. Specifically, the AdaBoost.M1 algorithm is applied to a sequence of three-layer, feed-forward neural networks. In order to overcome the drawback of long training time for each network in the ensemble, the networks are trained with an efficient Kalman filter algorithm. On the basis of statistical hypothesis tests, classification performance on multispectral imagery is compared with that of maximum likelihood and support vector machine classifiers. Good generalization accuracies are obtained with computation times of the order of I h or less. The algorithms involved are described in detail and a software implementation in the ENVI/IDL image analysis environment is provided. (C) 2009 Elsevier Ltd. All rights reserved.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Adaptive boosting
653 2 0 |2 Author
|a Kalman filter
653 2 0 |2 Author
|a Supervised learning
653 2 0 |2 Author
|a Neural networks
653 2 0 |2 Author
|a Satellite imagery
773 _ _ |a 10.1016/j.cageo.2008.07.004
|g Vol. 35, p. 1080 - 1295
|p 1080 - 1295
|q 35<1080 - 1295
|0 PERI:(DE-600)1499977-8
|t Computers & geosciences
|v 35
|y 2009
|x 0098-3004
856 7 _ |u http://dx.doi.org/10.1016/j.cageo.2008.07.004
909 C O |o oai:juser.fz-juelich.de:5090
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
970 _ _ |a VDB:(DE-Juel1)112503
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21