Hauptseite > Publikationsdatenbank > Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 > print |
001 | 50923 | ||
005 | 20190625110508.0 | ||
024 | 7 | _ | |2 pmid |a pmid:16565712 |
024 | 7 | _ | |2 DOI |a 10.1038/nmat1614 |
024 | 7 | _ | |2 WOS |a WOS:000236530400023 |
024 | 7 | _ | |a altmetric:21815066 |2 altmetric |
037 | _ | _ | |a PreJuSER-50923 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
084 | _ | _ | |2 WoS |a Chemistry, Physical |
084 | _ | _ | |2 WoS |a Materials Science, Multidisciplinary |
084 | _ | _ | |2 WoS |a Physics, Applied |
084 | _ | _ | |2 WoS |a Physics, Condensed Matter |
100 | 1 | _ | |a Szot, K. |b 0 |u FZJ |0 P:(DE-Juel1)VDB2799 |
245 | _ | _ | |a Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 |
260 | _ | _ | |a Basingstoke |b Nature Publishing Group |c 2006 |
300 | _ | _ | |a 312 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Nature Materials |x 1476-1122 |0 11903 |y 4 |v 5 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a The great variability in the electrical properties of multinary oxide materials, ranging from insulating, through semiconducting to metallic behaviour, has given rise to the idea of modulating the electronic properties on a nanometre scale for high-density electronic memory devices. A particularly promising aspect seems to be the ability of perovskites to provide bistable switching of the conductance between non-metallic and metallic behaviour by the application of an appropriate electric field. Here we demonstrate that the switching behaviour is an intrinsic feature of naturally occurring dislocations in single crystals of a prototypical ternary oxide, SrTiO(3). The phenomenon is shown to originate from local modulations of the oxygen content and to be related to the self-doping capability of the early transition metal oxides. Our results show that extended defects, such as dislocations, can act as bistable nanowires and hold technological promise for terabit memory devices. |
536 | _ | _ | |a Kondensierte Materie |c P54 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK414 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
650 | _ | 2 | |2 MeSH |a Aluminum Oxide: chemistry |
650 | _ | 2 | |2 MeSH |a Crystallization |
650 | _ | 2 | |2 MeSH |a Electric Conductivity |
650 | _ | 2 | |2 MeSH |a Electric Impedance |
650 | _ | 2 | |2 MeSH |a Electromagnetic Fields |
650 | _ | 2 | |2 MeSH |a Electronics |
650 | _ | 2 | |2 MeSH |a Metals: chemistry |
650 | _ | 2 | |2 MeSH |a Microscopy, Atomic Force |
650 | _ | 2 | |2 MeSH |a Nanotechnology: methods |
650 | _ | 2 | |2 MeSH |a Oxides: chemistry |
650 | _ | 2 | |2 MeSH |a Oxygen: chemistry |
650 | _ | 2 | |2 MeSH |a Strontium: chemistry |
650 | _ | 2 | |2 MeSH |a Surface Properties |
650 | _ | 2 | |2 MeSH |a Temperature |
650 | _ | 2 | |2 MeSH |a Titanium: chemistry |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Metals |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Oxides |
650 | _ | 7 | |0 12060-59-2 |2 NLM Chemicals |a strontium titanium oxide |
650 | _ | 7 | |0 1344-28-1 |2 NLM Chemicals |a Aluminum Oxide |
650 | _ | 7 | |0 7440-24-6 |2 NLM Chemicals |a Strontium |
650 | _ | 7 | |0 7440-32-6 |2 NLM Chemicals |a Titanium |
650 | _ | 7 | |0 7782-44-7 |2 NLM Chemicals |a Oxygen |
650 | _ | 7 | |a J |2 WoSType |
700 | 1 | _ | |a Speier, W. |b 1 |u FZJ |0 P:(DE-Juel1)125382 |
700 | 1 | _ | |a Bihlmayer, G. |b 2 |u FZJ |0 P:(DE-Juel1)130545 |
700 | 1 | _ | |a Waser, R. |b 3 |u FZJ |0 P:(DE-Juel1)131022 |
773 | _ | _ | |a 10.1038/nmat1614 |g Vol. 5, p. 312 |p 312 |q 5<312 |0 PERI:(DE-600)2088679-2 |t Nature materials |v 5 |y 2006 |x 1476-1122 |
856 | 7 | _ | |u http://dx.doi.org/10.1038/nmat1614 |
909 | C | O | |o oai:juser.fz-juelich.de:50923 |p VDB |
913 | 1 | _ | |k P54 |v Kondensierte Materie |l Kondensierte Materie |b Materie |z entfällt bis 2009 |0 G:(DE-Juel1)FUEK414 |x 0 |
914 | 1 | _ | |y 2006 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |a JCR/ISI refereed |
920 | 1 | _ | |d 31.12.2006 |g IFF |k IFF-IEM |l Elektronische Materialien |0 I:(DE-Juel1)VDB321 |x 1 |
920 | 1 | _ | |d 31.12.2006 |g IFF |k IFF-TH-I |l Theorie I |0 I:(DE-Juel1)VDB30 |x 0 |
920 | 1 | _ | |d 31.12.2006 |g WTP |k WTP |l Wissenschaftlich-Technische Planung |0 I:(DE-Juel1)VDB71 |x 2 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 3 |
970 | _ | _ | |a VDB:(DE-Juel1)79776 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
980 | _ | _ | |a I:(DE-Juel1)FS-20090406 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)PGI-7-20110106 |
981 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
981 | _ | _ | |a I:(DE-Juel1)FS-20090406 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|