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Research Centre Jülich, 52425 Jülich, Germany
E-mail: g.sutmann@fz-juelich.de

An introduction to classical molecular dynamics simulation is presented. In addition to some
historical notes, an overview is given over particle models, integrators and different ensemble
techniques. In the end, methods are presented for parallisation of short range interaction po-
tentials. The efficiency and scalability of the algorithms on massively parallel computers is
discussed with an extended version of Amdahl’s law.

1 Introduction

Computer simulation methods have become a very powerful tool to attack the many-body
problem in statistical physics, physical chemistry and biophysics. Although the theoretical
description of complex systems in the framework of statistical physics is rather well de-
veloped and the experimental techniques for detailed microscopic information are rather
sophisticated, it is often only possible to study specific aspects of those systems in great de-
tail via the simulation. On the other hand, simulations need specific input parameters that
characterize the system in question, and which come either from theoretical considerations
or are provided by experimental data. Having characterized a physical system in terms
of model parameters, simulations are often used both to solve theoretical models beyond
certain approximations and to provide a hint to experimentalists for further investigations.
In the case of big experimental facilities it is even often required to prove the potential
outcome of an experiment by computer simulations. In that way one can say that the field
of computer simulations has developed into a very important branch of science, which on
the one hand helps theorists and experimentalists to go beyond their inherent limitations
and on the other hand is a scientific field on its own.

The traditional simulation methods for many-body systems can be divided into two
classes of stochastic and deterministic simulations, which are largely covered by the Monte
Carlo (MC) method and the molecular dynamics (MD) method, respectively. Monte Carlo
simulations probe the configuration space by trial moves of particles. Within the so-called
Metropolis algorithm, the energy change from step n to n+ 1 is used as a trigger to accept
or reject the new configuration. Paths towards lower energy are always accepted, those
to higher energy are accepted with a probability governed by Boltzmann statistics. In
that way, properties of the system can be calculated by averaging over all Monte Carlo
moves (where one move means that every degree of freedom is probed once on average).
By contrast, MD methods are governed by the system’s Hamiltonian and consequently
Hamilton’s equations of motion

ṗi = −∂H
∂qi

, q̇i =
∂H
∂pi

(1)
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are integrated to move particles to new positions and to get new velocities at these new
positions. This is an advantage of MD simulations with respect to MC, since not only is the
configuration space probed but the whole phase space which gives additional information
about the dynamics of the system. Both methods are complementary in nature but they
lead to the same averages of static quantities, given that the system under consideration is
ergodic and the same statistical ensemble is used.

Although there are different methods to obtain information about complex systems,
particle simulations always require a model for the interaction between system constitu-
ants. This model has to be tested against experimental results, i.e. it should reproduce
or approximate experimental findings like distribution functions or phase diagrams, and
theoretical constraints, i.e. it should obey certain fundamental or limiting laws like energy
conservation.

Concerning MD simulations the ingredients for a program are basically threefold:
(i) As already mentioned, a model for the interaction between system constituants (atoms,
molecules, surfaces etc.) is needed. Often, it is assumed that particles interact only pair-
wise, which is exact e.g. for particles with fixed partial charges. This assumption greatly
reduces the computational effort and the work to implement the model into the program.
(ii) An integrator is needed, which propagates particle positions and velocities from time t
to t+ δt. It is a finite difference scheme which moves trajectories discretely in time. The
time step δt has properly to be chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s energy.
(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like pressure,
temperature or the number of particles are controlled. The natural choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE), since the system’s Hamiltonian
without external potentials is a conserved quantity. Nevertheless, there are extensions to
the Hamiltonian which also allow to simulate different statistical ensembles.

These steps essentially define an MD simulation. Having this tool at hand, it is possible
to obtain exact results within numerical precision. Results are only correct with respect to
the model which enters into the simulation and they have to be tested against theoretical
predictions and experimental findings. If the simulation results differ from the real system
properties or are incompatible with solid theoretical manifestations, the model has to be
refined. This procedure can be understood as an adaptive refinement which leads in the
end to an approximation of a model of the real world at least for certain properties. The
model itself may be constructed from plausible considerations, where parameters are cho-
sen from neutron diffraction or NMR measurements. It may also result from first principle
investigations, like quantum ab initio calculations. Although the electronic distribution of
the particles is calculated very accurately, this type of model building contains also some
approximations, since many-body interactions are mostly neglected (this would increase
the parameter space in the model calculation enormously). However, it often provides a
good starting point for a realistic model.

An important issue of simulation studies is the accessible time- and length-scale cov-
erable by microscopic simulations. Fig.1 shows a schematic representation for different
types of simulations in a length-time-diagram. It is clear that the more detailed a simu-
lation technique operates, the smaller is the accessibility of long times and large length
scales. Therefore quantum simulations, where fast motions of electrons are taken into
account, are located in the lower left corner of the diagram and typical length and time
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Figure 1. Schematic comparison of time- and length-scales, accessible to different types
of simulation techniques (quantum simulations (QM), molecular dynamics (MD), Brow-
nian dynamics (BD) and hydrodynamics/fluid dynamics (HD)). The black dots mark the
longest (≈ 1 µs) and the biggest (N > 5 × 109, L ≈ 0.4µm molecular dynamics
simulations by Duan & Kollman1 and Roth2 respectively.)

scales are of order of Å and ps. Classical molecular dynamics approximates electronic
distributions in a rather coarse-grained fashion by putting either fixed partial charges on
interaction sites or by adding an approximate model for polarization effects. In both cases,
the time scale of the system is not dominated by the motion of electrons, but the time of
intermolecular collision events, rotational motions or intramolecular vibrations, which are
orders of magnitude slower than those of electron motions. Consequently, the time step of
integration is larger and trajectory lengths are of order ns and accessible lengths of order
10 − 100 Å. If one considers tracer particles in a solvent medium, where one is not inter-
ested in a detailed description of the solvent, one can apply Brownian dynamics, where the
effect of the solvent is hidden in average quantities. Since collision times between tracer
particles is very long, one may apply larger timesteps. Furthermore, since the solvent is not
simulated explicitly, the lengthscales may be increased considerably. Finally, if one is in-
terested not in a microscopic picture of the simulated system but in macroscopic quantities,
the concepts of hydrodynamics may be applied, where the system properties are hidden in
effective numbers, e.g. density, viscosity, sound velocity.

It is clear that the performance of particle dynamics simulations strongly depends on
the computer facilities at hand. The first studies using MD simulation techniques were
performed in 1957 by B. J. Alder and T. E. Wainright3 who simulated the phase transition
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of a system of hard spheres. The general method, however, was presented two years later4.
In this early simulation, which was run an an IBM-704, up to 500 particles could be simu-
lated, for which 500 collisions per hour could be calculated. Taking into account 200000
collisions for a production run, these simulations lasted for more than two weeks. The
propagation of hard spheres in a simulation is determined by the collision events between
two particles. Therefore, the propagation is not based on an integration of the equations
of motion, but rather the calculation of the time of the next collision, which results in a
variable time step in the calculations.

The first MD simulation which was applied to atoms interacting via a continuous po-
tential was performed by A. Rahman in 1964. In this case, a model system for Argon was
simulated and not only binary collisions were taken into account but the interactions were
modeled by a Lennard-Jones potential and the equations of motion were integrated with a
finite difference scheme. This work may be considered as seminal for dynamical calcula-
tions. It was the first work where an exact method (within numerical precision) was used
to calculate dynamical quantities like autocorrelation functions and transport coefficients
like the diffusion coefficient for a realistic system. Also more involved topics like the dy-
namic van Hove function and non-Gaussian corrections to diffusion were evaluated. The
calculations were performed for 864 particles on a CDC 3600, where the propagation of
all particles for one time step took ≈ 45 s. The calculation of 50000 timesteps then took
more than three weeks! a

With the development of faster and bigger massively parallel architectures the accessi-
ble time and length scales are increasing. In the case of classical MD simulations it was
demonstrated by J. Roth in 1999 on the CRAY T3E-1200 in Jülich that it is possible to
simulate more than 5 × 109 particles, corresponding to a length scale of several 1000 Å.
This was possible with the highly memory optimised MD program IMD5, 2, which used
the 512 nodes with 256 MB memory each, quite efficiently. However, the limits of such a
demonstration became rather obvious, since for a usual production run of 10000 time steps
a simulation time of a quarter of a year would be required (given that the whole machine is
dedicated to one user). In another demonstration run Y. Duan and P. A. Kollman extended
the time scale of an all atom MD simulation to 1 µs, where they simulated the folding
process of the subdomain HP-36 from the villin headpiece6, 1. The protein was modelled
with a 596 interaction site model dissolved in a system of 3000 water molecules. Using a
timestep of integration of 2 × 10−15s, the program was run for 5 × 108 steps. In order to
perform this type of calculation, it was necessary to run the program several months on a
CRAY T3D and CRAY T3E with 256 processors. It is clear that such kind of simulation
is exceptional due to the large amount of computer resources needed, but is nonetheless a
kind of milestone pointing to future simulation practices.

Classical molecular dynamics methods are nowadays applied to a huge class of prob-
lems, e.g. properties of liquids, defects in solids, fracture, surface properties, friction,
molecular clusters, polyelectrolytes and biomolecules. Due to the large area of applica-
bility, simulation codes for molecular dynamics were developed by many groups. On the
internet homepage of the Collaborative Computational Project No.5 (CCP5)7 a lot of com-
puter codes are assembled for condensed phase dynamics. During the last years several
programs were designed for parallel computers. Among them, which are partly avail-

aOn a standard PC this calculation may be done within one hour nowadays!
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able free of charge, are, e.g., Amber/Sander8, CHARMM9, NAMD10, NWCHEM11 and
LAMMPS12.

2 Models for Particle Interactions

A system is completely determined through it’s Hamiltoian H = H0 + H1, where H0 is
the internal part of the Hamiltonian, given as

H0 =

N∑

i=1

p2
i

2mi
+

N∑

i<j

u(ri, rj) +

N∑

i<j

u(3)(ri, rj , rk) + . . . (2)

where p is the momentum, m the mass of the particles and u and u(3) are pair and three-
body interaction potentials. H1 is an external part, which can include time dependent
effects or external sources for a force. All simulated objects are defined within a model
description. Often a precise knowledge of the interaction between atoms, molecules or sur-
faces are not known and the model is constructed in order to describe the main features of
some observables. Besides boundary conditions, which are imposed, it is the model which
completely determines the system from the physical point of view. In classical simulations
the objects are most often described by point-like centers which interact through pair- or
multibody interaction potentials. In that way the highly complex description of electron
dynamics is abandoned and an effective picture is adopted where the main features like the
hard core of a particle, electric multipoles or internal degrees of freedom of a molecules are
modeled by a set of parameters and (most often) analytical functions which depend on the
mutual position of particles in the configuration. Since the parameters and functions give
a complete information of the system’s energy as well as the force acting on each particle
through F = −∇U , the combination of parameters and functions is also called a force
field. Different types of force field were developed during the last ten years. Among
them are e.g. MM313, MM414, Dreiding15, SHARP16, VALBON17, UFF18, CFF9519,
AMBER20 CHARMM21, OPLS22 and MMFF23. Typical examples for force field functions
are summerized in Fig. 2.

There are major differences to be noticed for the potential forms. The first distinction
is to be made between pair- and multibody potentials. In systems with no constraints, the
interaction is most often described by pair potentials, which is simple to implement into a
program. In the case where multibody potentials come into play, the counting of interaction
partners becomes increasingly more complex and dramatically slows down the execution
of the program. Only for the case where interaction partners are known in advance, e.g.
in the case of torsional or bending motions of a molecule can the interaction be calculated
efficiently by using neighbor lists or by an intelligent way of indexing the molecular sites.

A second important difference between interactions is the spatial extent of the potential,
classifying it into short and long range interactions. If the potential drops down to zero
faster than r−d, where r is the separation between two particles and d the dimension of
the problem, it is called short ranged, otherwise it is long ranged. This becomes clear by
considering the integral

I =

∫
drd

rn
=

{
∞ : n ≤ d

finite : n > d
(3)
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i.e. a particles’ potential energy gets contributions from all particles of the universe if
n ≤ d, otherwise the interaction is bound to a certain region, which is often modeled
by a spherical interaction range. The long range nature of the interaction becomes most
important for potentials which only have potential parameters of the same sign, like the
gravitational potential where no screening can occur. For Coulomb energies, where posi-
tive and negative charges may compensate each other, long range effects may be of minor
importance in some systems like molten salts. In the following two examples shall illus-
trate the different treatment of short- and long range interactions.

2.1 Short Range Interactions

Short range interactions offer the possibility to take into account only neigbored particles
up to a certain distance for the calculation of interactions. In that way a cutoff radius
is introduced beyond of which mutual interactions between particles are neglected. As
an approximation one may introduce long range corrections to the potential in order to
compensate for the neglect of explicit calculations. The whole short range potential may
then be written as

U =

N∑

i<j

u(rij |rij < Rc) + Ulrc (4)

The long-range correction is thereby given as

Ulrc = 2πNρ0

∫ ∞

Rc

dr r2g(r)u(r) (5)

where ρ0 is the number density of the particles in the system and g(r) = ρ(r)/ρ0 is the
radial distribution function. For computational reasons, g(r) is most often only calculated
up toRc, so that in practice it is assumed that g(r) = 1 for r > Rc, which makes it possible
for many types of potentials to calculate Ulrc analytically.

Besides internal degrees of freedom of molecules, which may be modeled with short
range interaction potentials (c.f. Fig.2), it is first of all the excluded volume of a particle
which is of importance. A finite diameter of a particle may be represented by a steep
repulsive potential acting at short distances. This is either described by an exponential
function or an algebraic form, ∝ r−n, where n ≥ 9. Another source of short range
interaction is the van der Waals interaction. For neutral particles these are the London
forces arising from induced dipole interactions. Fluctuations of the electron distribution
of a particle give rise to fluctuating dipole moments, which on average compensate to
zero. But the instantaneous created dipoles induce also dipoles on neighbored particles
which attract each other ∝ r−6. Two common forms of the resulting interactions are the
Buckingham potential

uB
αβ(rij) = Aαβe

−Bαβrij − Dαβ

r6ij
(6)

and the Lennard-Jones potential

uLJ
αβ (rij) = 4εαβ

((
σαβ

rij

)12

−
(
σαβ

rij

)6
)

(7)
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Figure 2. Typical examples for potential terms as used in common force-fields.

which are compared in Fig.3. In Eqs.6,7 the indices α, β indicate the species of the
particles, i.e. there are parameters A,B,D in Eq.6 and ε, σ in Eq.7 for intra-species inter-
actions (α = β) and cross species interactions (α 6= β). For the Lennard-Jones potential
the parameters have a simple physical interpretation: ε is the minimum potential energy,
located at r = 21/6σ and σ is the diameter of the particle, since for r < σ the potential
becomes repulsive. Often the Lennard-Jones potential gives a reasonable approximation
of a true potential. However, from exact quantum ab initio calculations an exponential
type repulsive potential is often more appropriate. Especially for dense systems the too
steep repulsive part often leeds to an overestimation of the pressure in the system. Since
computationally the Lennard-Jones interaction is quite attractive the repulsive part is some-
times replaced by a weaker repulsive term, like ∝ r−9. The Lennard-Jones potential has
another advantage over the Buckingham potential, since there are combining rules for the
parameters. A common choice are the Lorentz-Berelot combining rules

σαβ =
σαα + σββ

2
, εαβ =

√
εααεββ (8)

This combining rule is, however, known to overestimate the well depth parameter. Two
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Figure 3. Comparison between a Buckingham-, Lennard-Jones (12-6) and Lennard-Jones
(9-6) potential.

other commonly known combining rules try to correct this effect, which are Kong24 rules

σαβ =






1

213

εαασ
12
αα

√

εαασ6
ααεββσ6

ββ



1 +

(

εββσ
12
ββ

εαασ12
αα

)1/13




13





1/6

(9)

εαβ =

√

εαασ6
ααεββσ6

ββ

σ6
αβ

(10)

and the Waldman-Kagler25 rule

σαβ =

(

σ6
αα + σ6

ββ

2

)1/6

, εαβ =

√

εαασ6
ααεββσ6

ββ

σ6
αβ

(11)

In a recent study26 of Ar-Kr and Ar-Ne mixtures, these combining rules were tested and it
was found that the Kong rules give the best agreement between simulated and experimental
pressure-density curves. An illustration of the different combining rules is shown in Fig.4
for the case of an Ar-Ne mixture.

2.2 Long Range Interactions

In the case of long range potentials, like the Coulomb potential, interactions between all
particles in the system must be taken into account, if treated without any approximation.
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Figure 4. Resulting cross-terms of the Lennard-Jones potential for an Ar-Ne mixture.
Shown is the effect of different combining rules (Eqs.8-11). Parameters used are σAr =

3.406 Å, εAr = 119.4 K and σNe = 2.75 Å, εNe = 35.7 K.

This leads to an O(N2) problem, which increases considerably the execution time of a pro-
gram for larger systems. For systems with open boundary conditions (like liquid droplets),
this method is straightforwardly implemented and reduces to a double sum over all pairs
of particles. In the case when periodic boundary conditions are applied, not only the in-
teractions with particles in the central cell but also with all periodic images must be taken
into account and formally a lattice sum has to be evaluated

U =
1

2

N∑

i,j=1

∑

n

′ qiqj
|rij − nL| (12)

where n is a lattice vector and
∑

n
′ means that for n = 0 it is i 6= j. It is, however, a

well known problem that this type of lattice sum is conditionally convergent, i.e. the result
depends on the sequence of evaluating the sum (see e.g.27). A method to overcome this
limitation was invented by Ewald28. The idea is to introduce a convergence factor into the
sum of Eq.12 which depends on a parameter s, evaluate the sum and put s→ 0 in the end.
A characterization of the convergence factors was given in Ref.29, 30. A form which leads
to the Ewald sum is an exponential e−sn2

, transforming Eq.12 into

U(s) =
1

2

N∑

i,j=1

∑

n

′ qiqj
|rij − nL| e

−sn2

(13)

The evaluation and manipulation of this equation proceeds now by using the definition for
the Γ-function and the Jacobi imaginary transform. A very instructive way of the derivation
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of the Ewald sum may be found in Ref.29, 30; a heuristic derivation is given Ref.31. For
brevity, only the final form of the sum is given here

U =
1

2

{
N∑

i,j=1

∑

n

′ qiqjerfc(α|rij − nL|/L)

|rij − nL|
︸ ︷︷ ︸

Ureal

+
4πqiqj
L3

∑

k

1

k2
eikrije−k2/4α2

︸ ︷︷ ︸

Ureciprocal

+
1

L




∑

n6=0

erfc(αn)

|n| +
e−π2n2

/α2

πn2
− 2α√

π





N∑

i=1

q2i

︸ ︷︷ ︸

Uself

+
4π

L3

∣
∣
∣
∣
∣

N∑

i=1

qi

∣
∣
∣
∣
∣

2

︸ ︷︷ ︸

Usurface

} (14)

The evaluation of the potential thus splits into four different terms, where the so called self-
and surface-terms are constant and may be calculated in the beginning of a simulation.
The first two sums, however, depend on the interparticle separations rij , which need to be
evaluated in each time step. It is seen that the lattice sum is essentially split into a sum
which is evaluated in real space and a sum over reciprocal space-vectors, k = 2πn/L. The
parameterα appears formally in the derivation as a result of an integral splitting but it has a
very intuitive physical meaning. The first sum gives the potential of a set of point charges
which are screened by an opposite charge of the same magnitude but with a Gaussian
form factor where the width of the Gaussian is given by α. The second sum subtracts this
screening charge, but the sum is evaluated in reciprocal space. Since erfc(x) = 1 − erf(x)
decays as e−x2

for large x, the first sum contains mainly short range contributions. On the
other side, the second sum decays strongly for large k-vectors and thus contains mainly
long range contributions. Most often, the parameter α is chosen in way to reduce the
evaluation of the real space sum to the central simulation cell. Often, a spherical cutoff
is then applied for this term, i.e. contributions of particle pairs, separated in a distance
|rij | > Rc are neglected. On the other hand, the reciprocal space sum is conventionally
truncated after a maximum wave-vector kmax. All three parameters α,Rc,kmax may be
chosen in an optimal way to balance the truncation error in each sum and the number of
operations. This balancing even leads to the effect that the Ewald sum may be tuned32, 33 to
scale with O(N3/2) (for fast methods which have better scaling characteristics, see Ref.31).
A detailed analysis of the individual errors occuring in the different sums was given in
Ref.34. An alternative derivation of the Ewald sum starts directly by assuming a Gaussian
form factor for the screening charge. This gives the opportunity to investigate also form
factors, differing from a Gaussian. In these cases the convergence function is in general
not known but it is assumed to exist. Different form factors were studied systematically in
Ref.35.

The present form of the Ewald sum gives an exact representation of the potential energy
of point like charges in a system with periodic boundary conditions. Sometimes the charge
distribution in a molecule is approximated by a point dipole or higher multipole moments.
A more general form of the Ewald sum, taking into account arbitrary point multipoles was
given in Ref.36. The case, where also electronic polarizabilities are considered is given in
Ref.37.

In certain systems, like in molten salts or electrolyte solutions, the interaction between
charged species may approximated by a screened Coulomb potential, which has a Yukawa-
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like form

U =
1

2

N∑

i,j=1

qiqj
e−κ|rij |

|rij |
(15)

The parameter κ is the inverse Debye length, which gives a measure of screening strength
in the system. If κ < 1/L the potential is short ranged and usual cut-off methods may
be used. Instead, if κ > 1/L, or generally if u(r = L/2) is larger than the prescribed
uncertainties in the energy, the minimum image convention in combination with truncation
methods fails and the potential must be treated in a more rigorous way, which was pro-
posed in Ref.38, where an extension of the Ewald sum for such Yukawa type potentials was
developed.

3 The Integrator

For a given potential model which characterizes the physical system, it is the integrator
which is responsible for the accuracy of the simulation results. If the integrator would
work without any error the simulation would provide exact model results within the errors
occuring due to a finite number representation. However, any finite difference integrator
is naturally an approximation for a system developing continuously in time. The require-
ments for the integrator are therefore to be

• accurate, in the sense that it approximates the true trajectory very well (this may be
checked with simple model systems for which analytical solutions exist)

• stable, in the sense that it conserves energy and that small perurbations do not lead to
instabilities

• robust, in the sense that it allows for large time steps in order to propagate the system
efficiently through phase space

In the following different types of integration schemes are presented. First, simple inte-
grators based on Taylor expansions are shown. Later on integrators based on an operator
splitting method are discussed which provide the possibility to introduce in an elegant way
the integrations of motion on different time scales. Finally, attention is given to more
complex situations where molecules with orientational degrees of freedom are considered.

3.1 Expansion Based Integrators

The simplest and most straight forward way to construct an integrator is by expanding the
positions and velocities in a Taylor series. The class of integrators which may be obtained
in that way are called Verlet-Störmer integrators39, 40. For a small enough time step δt the
expansion gives

r(t+ δt) = r(t) + v(t) δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 + . . . (16)

v(t + δt) = v(t) + a(t) δt+
1

2
b(t)δt2 +

1

6
c(t)δt3 + . . . (17)
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where a,b, c are the 2nd, 3rd and 4th time derivative of the coordinates. In the same way
the expansion may be performed for δt→ −δt, which gives

r(t− δt) = r(t) − v(t) δt+
1

2
a(t)δt2 − 1

6
b(t)δt3 ± . . . (18)

v(t − δt) = v(t) − a(t) δt+
1

2
b(t)δt2 − 1

6
c(t)δt3 ± . . . (19)

Adding up Eqs.16,18 and Eqs.17,19 gives for the new positions and velocities

r(t+ δt) = 2r(t) − r(t− δt) + a(t)δt2 + O(δt4) (20)

v(t + δt) = 2v(t) − v(t− δt) + b(t)δt2 + O(δt4) (21)

A method whose truncation varies as δt(n+1) is called an n-th order method. Eqs.20,21 are
therefore of 3rd order.The drawback of Eq.21 is, however, that it requires the 3rd deriva-
tive of the coordinates with respect with to time which is not routinely calculated in MD
simulations and thus introduces some additional computational and storage overhead. To
overcome this drawback one can simply substract Eq.18 from Eq.16, giving the central
difference scheme for the velocity

v(t) =
1

2δt
(r(t+ δt) − r(t− δt)) + O(δt3) (22)

This is, however, one order less in accuracy than Eq.21 and also provides velocities at
timestep t, not at t + δt. Since this information i not required by Eq.20 to calculate accu-
rately the positions, one may take Eq.22 as an estimate for the velocities from which the
kinetic energy of the system is calculated.

From the point of view of storage requirements, Egs.20,22 are not optimal, since infor-
mation is required form positions not only at time t but also at time t − δt. An equivalent
algorithm, which stores only information from one timestep is the so called velocity Verlet
algorithm, whic reads

r(t+ δt) = r(t) + v(t) δt+
1

2
a(t)δt2 (23)

v(t+ δt) = v(t) +
1

2
δt(a(t) + a(t+ δt)) (24)

This scheme, however, requires the knowledge of the accelerations, a, at timestep t + δt.
One may therefore decompose Eq.24 into two steps. First calculate

v(t + δt/2) = v(t) +
1

2
δta(t) (25)

then compute the actual forces on the particles at time t+ δt and finish the velocity calcu-
lation with

v(t+ δt) = v(t + δt/2) +
1

2
a(t+ δt)δt (26)

At this point the kinetic energy may be calculated without a time delay of δt, as it was
in Eq.22. Several other schemes have been proposed in literature, such as the leap-frog41
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scheme or Beeman’s42 algorithm. They all have the same accuracy and should produce
identical trajectories in coordinate space b

3.2 Operator Splitting Methods

A more rigorous derivation, which in addition leads to the possibility of splitting the prop-
agator of the phase space trajectory into several time scales, is based on the phase space
description of a classical system. The time evolution of a point in the 6N dimensional
phase space is given by the Liouville equation

Γ(t) = eiLt Γ(0) (27)

where Γ = (q,p) is the 6N dimensional vector of generalized coordinates,
q = q1, . . . ,qN , and momenta, p = p1, . . . ,pN . The Liouville operator, L, is defined as

iL = {. . . ,H} =

N∑

j=1

(
∂qj

∂t

∂

∂qj
+
∂pj

∂t

∂

∂pj

)

(28)

In order to construct a discrete timestep integrator, the Liouville operator is split into two
parts, L = L1 + L2, and a Trotter expansion43 is performed

eiLδt = ei(L1+L2)δt (29)

= eiL1δt/2eiL2δteiL1δt/2 + O(δt3) (30)

The partial operators can be chosen to act only on positions and momenta. Assuming usual
cartesian coordinates for a system of N free particles, this can be written as

iL1 =

N∑

j=1

Fj
∂

∂pj
(31)

iL2 =
N∑

j=1

vj
∂

∂rj
(32)

Applying Eq.29 to the phase space vector Γ and using the property ea∂/∂xf(x) = f(x+a)
for any function f , where a is independent of x, gives

vi(t+ δt/2) = v(t) +
Fi(t)

mi

δt

2
(33)

ri(t+ δt) = ri(t) + vi(t+ δt/2)δt (34)

vi(t+ δt) = vi(t+ δt/2) +
Fi(t+ δt)

mi

δt

2
(35)

which is the velocity Verlet algorithm, Eqs.23,25,26.

bThis statement is derived from the point of view of accuracy. Since numerical operations are in general not
associative a differnt implementation of an algorithm will have different round off errors and therefore the accu-
mulation of the roundoff error will accumulate which will lead in practice to a deviation from the above statement.
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In the same spirit, another algorithm may be derived by simply changing the definitions
for L1 → L2 and L2 → L1. This gives the so called position Verlet algorithm

ri(t+ δt/2) = ri(t) + v(t)
δt

2
(36)

vi(t+ δt) = v(t) +
Fi(t+ δt/2)

mi
(37)

ri(t+ δt) = ri(t+ δt/2) + (v(t) + vi(t+ δt))
δt

2
(38)

Here the forces are calculated at intermediate positions ri(t+δt/2). The equations of both
the velocity Verlet and the position Verlet algorithms have the property of propagating
velocities or positions on half time steps. Since both schemes decouple into an applied
force term and a free flight term, the three steps are often called half-kick/drift/half kick
for the velocity Verlet and correspondingly half-drift/kick/half-drift for the position Verlet
algorithm.

Both algorithms, the velocity and the position Verlet method, are examples for sym-
plectic algorithms, which are characterized by a volume conservation in phase space.
This is equivalent to the fact that the Jacobian matrix of a transform x′ = f(x, p) and
p′ = g(x, p) satisfies

(
fx fp

gx gp

)(
0 I

−I 0

)(
fx fp

gx gp

)

=

(
0 I

−I 0

)

(39)

Any method which is based on the splitting of the Hamiltonian, is symplectic. This does
not yet, however, guarantee that the method is also time reversible, which may be also
be considered as a strong requirement for the integrator. This property is guaranteed by
symmetric methods, which also provide a better numerical stability44. Methods, which
try to enhance the accuracy by taking into account the particles’ history (multi-step meth-
ods) tend to be incompatible with symplecticness45, 46, which makes symplectic schemes
attractive from the point of view of data storage requirements. Another strong argument
for symplectic schemes is the so called backward error ananlysis47–49. This means that the
trajectory produced by a discrete integration scheme, may be expressed as the solution of
a perturbed ordinary diffential equation whose rhs can formally be expressed as a power
series in δt. It could be shown that the system, described by the ordinary differential equa-
tion is Hamiltonian, if the integrator is symplectic50, 51. In general, the power series in δt
diverges. However, if the series is truncated, the trajectory will differ only as O(δtp) of the
trajectory, generated by the symplectic integrator on timescales O(1/δt)52.

3.3 Multiple Time Step Methods

It was already mentioned that the rigorous approach of the decomposition of the Liouville
operator offers the opportunity for a decomposition of time scales in the system. Supposing
that there are different time scales present in the system, e.g. fast intramolecular vibrations
and slow domain motions of molecules, then the factorization of Eq.29 may be written in
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a more general way

eiL∆t = eiL
(s)
1 ∆t/2eiL

(f)
1 ∆t/2eiL2δteiL

(f)
1 ∆t/2eiL

(s)
1 ∆t/2 (40)

= eiL
(s)
1 ∆t/2

{

eiL
(f)
1 δt/2eiL2δteiL

(f)
1 δt/2

}p

eiL
(s)
1 ∆t/2 (41)

where the time increment is ∆t = pδ. The decomposition of the Liouville operator may
be chosen in the convenient way

iL(s)
1 = F

(s)
i

∂

∂pi
, iL(f)

1 = F
(f)
i

∂

∂pi
, iL2 = vi

∂

∂qi
(42)

where the superscript (s) and (f) mean slow and fast contributions to the forces. The
idea behind this decomposition is simply to take into account contributions from slowly
varying components only every p’th timestep with a large time interval. Therefore, the
force computation may be considerably speeded up in the the p − 1 intermediate force
computation steps. In general, the scheme may be extended to account for more time
scales. Examples for this may be found in Refs.53–55. One obvious problem, however,
is to separate the timescales in a proper way. The scheme of Eq.41 is exact if the time
scales decouple completely. This, however, is very rarely found and most often timescales
are coupled due to nonlinear effects. Nevertheless, for the case where ∆t is not very
much larger than δt (p ≈ 10), the separation may be often justified and lead to stable
results. Another criteria for the separation is to distinguish between long range and short
range contributions to the force. Since the magnitude and the fluctuation frequency is very
much larger for the short range contributions this separation makes sense for speeding up
computations including long range interactions56.

The method has, however, its limitations57, 58. As described, a particle gets every n’th
timestep a kick due to the slow components. It was reported in literature that this may
excite a system’s resonance which will lead to strong artifacts or even instabilities59, 60.
Recently different schemes were proposed to overcome these resonances by keeping the
property of symplecticness61–67.

3.4 Constraint Dynamics

The methods discussed so far are quite general for the cases of free particles. If constraints
are applied, e.g. a fixed bond length between particles in a molecule or a fixed bond
angle, the integration scheme has either to be modified or extended. A modification of
the integrator means that the equations of motion have to be formulated for rotational and
translational degrees of freedoms. On the other hand an extension of the integrator means
that constraints have to be taken into account when moving an individual particle via the
integration scheme. The first method is mainly applied to molecules which are modeled as
rigid body, i.e. the motion may easily be described as the translation of the center of mass
and a rotation around its principle axis of inertia. In the case of large molecules, where not
all bond lengths and angles are fixed and which exhibit internal degrees of freedom such
as side chain motions or rotation of atomic groups, constraint methods have to be applied.
In the following the motion of rigid bodies and the constraint dynamics will be described.
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3.4.1 Rigid Body Motion

The natural way of describing a rigid body is to specify the coordinates and the moment
of the center of mass as well as the orientation with respect to a space fixed coordinate
system and the angular velocity around the principle molecular axis. The translational
motion is thereby described by the total force acting on the molecule and the integration
schemes, described earlier may be applied. The rotational motion requires a description
of the orientation of the moelcule and a calculation of the torque. As a first choice for the
orientational description one could use the Euler angles (ϕ, ϑ, ψ) to build up the rotation
matrix. However, a numerical problem appears with solving the equations of motions

∂ϕ

∂t
= −ωx

sinϕ cosϑ

sinϑ
+ ωy

cosϕ cosϑ

sinϑ
+ ωz (43)

∂ϑ

∂t
= ωx cosϕ+ ωy sinϕ (44)

∂ψ

∂t
= ωx

sinϕ

sinϑ
− ωy

cosϕ

sinϑ
(45)

It is obvious that for the case, when ϑ is close or equal zero, the terms in ∂tϕ and ∂tψ
diverge and lead to numerical instabilities. Since the orientation where ϑ = 0 is physi-
cally not a special case but only related to the special convention of a chosen coordinate
system, one can in principle switch the description into another coordinate system when ϑ
approaches zero68. This is, however, not very efficient since variables have to be calculated
and stored in different coordinate systems at the same time.

An elegant method which avoids these problems is the orientational description in
terms of quaternions, q = (q1, . . . , q4), originally introduced by Hamilton in order to ex-
tend the complex numbers69. They are defined by algebraic relations and have the property
∑

i q
2
i = 1. Also, they can be expressed in terms of Eulerangles

q1 = cos
ϑ

2
cos

ϕ+ ψ

2
(46)

q2 = sin
ϑ

2
cos

ϕ− ψ

2
(47)

q3 = sin
ϑ

2
sin

ϕ− ψ

2
(48)

q4 = cos
ϑ

2
sin

ϕ+ ψ

2
(49)

so that they can completely describe the orientation of a fixed body in space. The equations
of motion for q are given by

∂q

∂t
=

1

2
Qω

b (50)
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where

Q =







q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1







(51)

and

(ωb)T = (0, ωb
x, ω

b
y, ω

b
z) (52)

where the superscript b denotes that the angular velocities are evaluated in the body fixed
frame. From Eq.50 it becomes obvious that the divergence problems have disappeared.
The transformation between a fixed body frame (x̂) and and a space fixed description (x)
is then provided by x̂ = Rx, where the rotation matrix R is given by

R =








q21 + q22 − q23 − q24 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q21 − q22 + q23 − q24 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q21 − q22 − q23 + q24








(53)

The integration scheme for the rotational part is more involved than it is for its translational
counterpart. Since the calculation of angular momenta is most easily done in the fixed body
(molecular) frame, where the moment of inertia tensor is diagonal, a transformation from
the space fixed (laboratory) frame to the molecular frame is required.

In the following a leap-frog like scheme is described, which uses information of half-
step results70. In a first step the torque on the molecule is calculated by Ti =

∑

α dα×Fα,
where α denotes the molecular sites and dα = R(Q)d̂α is the vector pointing from the
center of mass of the molecule to site α, written in the laboratory frame. Having the torque,
the angular momentum j and the angular velocity ω in the molecular frame can be obtained
via

ji(t) = ji(t− δt/2) +
1

2
Tiδt (54)

ω̂i = Î−1RT (Qi)ji(t) (55)

where Î−1 is the inverse of the diagonal moment of inertia tensor. A similar step is per-
formed to calculate the quaternions at time t+ δt/2

qi(t+ δt/2) = qi(t) +
δt

2
Q(qi(t))ω̂i (56)

In the next step the angular momenta are propagated from where the angular velocity can
be obtained, in order to complete the intergation step

ĵi(t+ δt/2) = RT (Qi(t+ δt/2))(ji(t− δt/2) + δtTi(t)) (57)

ω̂i(t+ δt/2) = Î−1 ĵi(t+ δt/2) (58)

qi(t+ δt) = qi(t) +
δt

2
Qi(t+ δt/2)ω̂i(t+ δt/2) (59)
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Examples for rigid-body algorithms, based on a splitting method, which conserve the
symplectic structure and are time reversible can be found in Refs.71, 72. The method pre-
sented in Ref.71 is implemented in the downloadable research program ORIENT73.

3.4.2 Constrained Motion

Describing large molecules as rigid bodies is often a poor approximation. Especially, if
conformational changes of a molecule are expected, it is not possible to freeze all internal
degrees of freedom. However, if one is not interested in the high frequency intramolecular
vibrational motions, which require a rather small timestep of integration (and therefore will
slow down a simulation considerably), one can fix the bond lengths between neighbored
sites and allow for bending and dihedral motions. The control of the bond length can
be achieved by introducing Lagrangian multipliers. If the constraints are formulated as
holonomic constraints the equations of motion are modified according to

∂qi

∂t
=

pi

mi
(60)

∂pi

∂t
= −∂U(q)

∂qi
+ g′(q)λ (61)

g(q) = 0 (62)

The advantage of this method is that the atoms of the molecule may be treated individually
with a simple integrator scheme. No transformation from a laboratory to molecular frame
has to be performed. Also the integration of angular degrees of freedom and the calcula-
tion of torques is not required. Solving for the Lagrange multiplier, generally leads to a
diagonalization of an P ×P matrix, where P is the number of constraints. However, since
constraints are applied most often only to nearby atoms the matrix is sparse and and fast
methods may be applied74. An alternative to this direct method is to fulfill the constraints
in an iterative way one by one up to a given precision. First an unconstrained motion of the
atoms of a molecule is performed which leads in general to positions which do not satisfy
the constraints. The correction of the positions is then achieved via

ri(t+ δt) → ri(t+ δt) +
δt2

2mi

∑

γ

Fc
γ (63)

where γ runs over all constraints and the constraint forces are given by

Fc =
µ

2δt2
(d2

0 − d2)

|d0d|
d0 (64)

where d0 is the constrained bond vector at the start of the integration step and d is the
bond vector after the unconstrained integration step, µ = mimj/(mi + mj) is the re-
duced mass of the atom pair i, j. For a molecule with multiple constraints, Eq.63 is a
first order correction , which can be applied in an iterative way up to a given precision,
|d0 − d|/|d0| < 10−k, where k is the desired precision which is often chosen as k ≥ 4
in order to conserve energy. This method is used in the algorithms SHAKE75, invented by
Ryckaert et al. and in RATTLE76 invented by Andersen. The latter one was proven to be
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symplectic and time reversible59. Refinements of the SHAKE algorithm were proposed in
Ref.77. Schemes, where rotations of linked bodies are taken into account by quaternion
methods, were proposed in Refs.78, 79.

4 Simulating in Different Ensembles

In MD simulations it is possible to realize different types of thermodynamic ensembles
which are characterized by the control of certain thermodynamic quantities. If one knows
how to calculate a thermodynamic quantity, e.g. the temperature or pressure, it is often
possible to formulate an algorithm which fixes this property to a desired value. However, it
is not always clear whether this algorithm decribes the properties of a given thermodynamic
ensemble.

One can distinguish four different types of control mechanisms:

Differential control : the thermodynamic quantity is fixed to the prescribed value and no
fluctuations around an average value occur.

Proportional control : the variables, coupled to the thermodynamic property f , are cor-
rected in each interation step through a coupling constant towards the prescribed value of
f . The coupling constant determines the strength of the fluctuations around 〈f〉.

Integral control : the system’s Hamiltonian is extended and variables are introduced which
represent the effect of an external system which fix the state to the desired ensemble. The
time evolution of these variables is determined by the equations of motion derived from
the extended Hamiltonian.

Stochastic control : the values of the variables coupled to the thermodynamic property
f are propagated according to modified equations of motion, where certain degrees of
freedom are additionally modified stochastically in order to give the desired mean value of
f .

In the following, different statistical ensembles are presented and all methods will be
discussed via examples.

4.1 The Microcanonical Ensemble

The microcanonical ensemble (NVE) may be considered as the natural ensemble for
molecular dynamics simulations (as it is the canonical ensemble (NVT) for Monte Carlo
simulations). If no time dependent external forces are considered, the system’s Hamilto-
nian is constant, implying that the system’s dynamics evolves on a constant energy surface.
The corresponding probability density in phase space is therefore given by

ρ(q,p) = δ(H(q,p) −E) (65)

In a computer simulation this theoretical condition is generally violated, due to limited
accuracy in integrating the equations of motion and due to roundoff errors resulting from
a limited precision of number representation. In Ref.80 a numerical experiment was per-
formed showing that tiny perturbations of the initial positions of a trjectory are doubled
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about every picosecond. This would mean even for double precision arithmetic that after
about 50 ps roundoff errors will be dominant59. This is, however, often not a too seri-
ous restriction, since most time correlation functions drop to zero on a much shorter time
scale. Only for the case where long time correlations are expected one does have to be very
careful in generating trajectories.

4.2 The Canonical Ensemble

The simplest extension to the microcanonical ensemble is the canonical one (N,V,T), where
the number of particles, the volume and the temperature are fixed to prescribed values. The
temperatureT is, in contrast toN and V , an intensive parameter. The extensive counterpart
would be the kinetic energy of the system. In the following, different control mechanisms,
introduced in Sec. 4 are described.

4.2.1 The Differential Thermostat

Different methods were proposed to fix the temperature to a fixed value during a simula-
tion without allowing fluctuations of T . The first method was introduced by Woodcock81,
where the velocities were scaled according to pi →

√

T0/Tpi, where T0 is the reference
temperature and T the actual temperature, calculated from the velocity of the particles.
This method leads to discontinuities in the momentum part of the phase space trajectory
due to the rescaling procedure.

An extension of this method implies a constraint of the equations of motion to keep the
temperature fixed82–84. The principle of least constraint by Gauss states that a force added
to restrict a particle motion on a constraint hypersurface should be normal to the surface in
a realistic dynamics. From this principle the equations of motion are derived

∂qi

∂t
= pi (66)

∂pi

∂t
= − ∂V

∂qi
− ζpi (67)

where ζ is a constraint force term, calculated as

ζ = −

N∑

i=1

pi

mi

∂V

∂qi

N∑

i=1

p2
i

mi

(68)

Since the principle of least constraint by Gauss is used, this algorithm is also called Gaus-
sian thermostat. It may be shown for this method that the configurational part of the phase
space density is of canonical form, i.e.

ρ(q,p) = δ(T − T0) e
−βU(q) (69)
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4.2.2 The Proportional Thermostat

The proportional thermostat tries to correct deviations of the actual temperature T form
the prescribed one T0 by multiplying the velocities by a certain factor λ in order to move
the system dynamics towards one corresponding to T0. The difference with respect to the
differential control is that the method allows for fluctuations of the temperature, thereby
not fixing it to a constant value. In each integration step it is insured that the T is corrected
to a value more close to T0. A thermostat of this type was proposed by Berendsen et al.85, 86

who introduced weak coupling methods to an external bath. The weak coupling thermostat
was motivated by the minimization of local disturbances of a stochastic thermostat while
keeping the global effects unchanged. This leads to a modification of the momenta pi →
λpi, where

λ =

[

1 +
δt

τT

(
T0

T
− 1

)] 1
2

(70)

The constant τT , appearing in Eq.70, is a so called coupling time constant which deter-
mines the time scale on which the desired temperature is reached. It is easy to show that
the proportional thermostat conserves a Maxwell distribution. However, the method cannot
be mapped onto a specific thermodynamic ensemble. In Ref.87 the phase space distribution
could be shown to be

ρ(q,p) = f(p) e−β(U(q)−αβδU(q)2/3N) (71)

where α ' (1 − δE/δU) and δU, δE are the mean fluctuations of the potential and total
energy. f(p) is in general an unknown function of the momenta, so that the full density
cannot be determined. For α = 0, which corresponds in Eq.70 to τT = δt, the fluctuations
in the kinetic energy vanish and Eq.71 reduces to Eq.69, i.e. it represents the canonical
distribution. The other extreme of τT → ∞ corresponds to an isolated system and the
energy should be conserved, i.e. δE = δK + δU = 0 and α = 1. In this case, Eq.71
corresponds to the microcanonical distribution87. Eq.71 may therefore be understood as an
interpolation between the canonical and the microcanonical ensemble.

4.2.3 The Stochastic Thermostat

In the case of a stochastic thermostat, all or a subset of the degrees of freedom of the
system are subject to collisions with virtual particles. This method can be motivated by a
Langevin stochastic differential equation which escribes the motion of a particle due to the
thermal agitation of a heat bath

∂pi

∂t
= − ∂U

∂qi
− γpi + F+ (72)

where γ is a friction constant and F+ a Gaussian random force. The amplitude of F+ is
determined by the second fluctuation dissipation theorem

〈F+
i (t1)F

+
j (t2)〉 = 2γkBTδijδ(t1 − t2) (73)

A larger value for γ will increase thermal fluctuations, while γ = 0 reduces to the micro-
canonicle ensemble. This method was applied to molecular dynamics in Ref.88. A more
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direct way was followed in Refs.89, 90 where particles collide occasionally with virtual par-
icles from a Maxwell distribution corresponding to a temperature T0 and after collisions
loose their memory completely, i.e. the motion is totally randomized and the momenta
become discontinuous. In order not to disturb the phase space trajectory too much, the col-
lision frequency has to be chosen not too high. Since a large collision frequency will lead
to a strong loss of the particle’s memory, it will lead to a fast decay of dynamic correlation
functions91. The characteristic decay time of correlation functions should therefore be a
measure for the collision time. It was proved for the stochastic thermostat89 that it leads to
a canonical distribution function.

A slightly different method which is able to control the coupling to an external bath
was suggested in Refs.92, 93. In this approach the memory of the particle is not completely
destroyed but the new momenta are chosen to be

pi,n =
√

1 − α2 pi,o + α pr (74)

where pr is chosen a momentum, drawn from a Maxwell distribution corresponding to T0.
Similar to the proportional thermostat, the parameter α may be tuned to give distributions
ranging from the microcanonical to the canonical ensemble.

4.2.4 The Integral Thermostat

The integral method is also often called extended system method as it introduces additional
degrees of freedom into the system’s Hamiltonian for which equations of motion can be
derived. They are integrated in line with the equations for the spatial coordinates and
momenta. The idea of the method invented by Nosé94, 95, is to reduce the effect of an
external system acting as heat reservoir to kepp the temperature of the system constant, to
one additional degree of freedom. The thermal interactions between a heat reservoir and
the system result in a change of the kinetic energy, i.e. the velocity of the particles in the
system. Formally it may therefore be expressed a scaling of the velocities. Nosé introduced
two sets of variables: real and so called virtual ones. The virtual variables are consistently
direved from a Sundman transformation96 dτ/dt = s, where τ is a virtual time and s is a
resulting scaling factor, which is treated as dynamical variable. The transformation from
virtual to real variables is then performed as

pi = πis , qi = ρi (75)

The introduction of the effective mass, Ms, connects also a momentum to the additional
degree of freedom, πs. The resulting Hamiltonian, expressed in virtual coordinates reads

H∗ =

N∑

i=1

π
2
i

2mis2
+ U(ρ) +

π2
s

2Ms
+ gkBT ln s (76)

where g = 3N + 1 is the number of degrees of freedom (system of N free particles). The
Hamiltonian in Eq.76 was shown to lead to a probability density in phase space, corre-
sponding to the canonical ensemble.
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The equations of motion drawn from this Hamiltonian are

∂ρi

∂τ
=

πi

s2
(77)

∂πi

∂τ
= −∂U(ρ)

∂ρi

(78)

∂s

∂τ
=

πs

Ms
(79)

∂πs

∂τ
=

1

s3

N∑

i=1

π
2
i

mi
− gkBT

s
(80)

If one transforms these equations back into real variables, it is found97 that they can be
simplified by introducing the new variable ζ = ∂s/∂t = sps/Ms (ps is real momentum
connected to the heat bath)

∂qi

∂t
=

pi

mi
(81)

∂pi

∂t
= −∂U(q)

∂qi
− ζpi (82)

∂ ln s

∂t
= ζ (83)

∂ζ

∂t
=

1

Ms

(
N∑

i=1

p2
i

mi
− gkBT

)

(84)

These equations describe the so called Nosé-Hoover thermostat.

4.3 The Constant-Pressure Constant-Enthalpy Ensemble

In order to control the pressure in an MD simulation cell, it is necessary to allow for volume
variations. A simple picture for a constant pressure system is a box the walls of which are
coupled to a piston which controls the pressure. In contrast to the case where the temper-
ature is controled, no coupling to the dynamcics of the particles (timescales) is performed
but the length scales of the system will be modified. In the following, different algorithms
are described for a constant pressure ensemble. The conserved quantity will not be the sys-
tem’s energy, since there will be an energy transfer to or from the external system (piston
etc.), but the enthalpy H will be constant. In line with the constant temperature methods
there are also differential, proportional, integral and stochastic methods to achieve a con-
stant pressure situation in simulations. The differential method, however, is not dicussed
here, since there are problems with that method related to the correct initial pressure98, 99.
A scheme for the calculation of the pressure in MD simulations for various model systems
is given in the appendix.
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4.3.1 The Proportional Barostat

The proportional thermostat in Sec. 4.2.2 was introduced as an extension for the equa-
tion of the momentum, since it couples to the kinetics of the particles. Since the barostat
acts on a volume change, which may be expressed in a scaling of particles’ positions, a
phenomenological extension for the equation of motion of the coordinates may be formu-
lated85

∂qi

∂t
=

pi

mi
+ αqi (85)

while a change in volume is postulated as

V̇ = 3αV (86)

A change in pressure is related to the isothermal compressibility κT

Ṗ = − 1

κTV

∂V

∂t
= − 3α

κT
(87)

which is approximated as

(P0 − P )

τP
= − 3α

κT
(88)

and therefore Eq.85 can be written as

∂qi

∂t
=

pi

mi
− κT

3τP
(P0 − P ) (89)

which corresponds to a scaling of the boxlength and coordinates q → sq and L → sL,
where

s = 1 − κT δt

3τP
(P0 − P ) (90)

The time constant τP was introduced into Eq.88 as a characteristic timescale on which
the system pressure will approach the desired pressure P0. It also controls the strength of
the coupling to the barostat and therefore the strength of the volume/pressure fluctuations.
If the isothermal compressiblity, κT , is not known for the system, the constant τ ′P =
τP /κT may be considered as a phenomenological coupling time which can be adjusted to
the system under consideration. As for the proportional thermostat, a drawback for this
method is that the statistical ensemble is not known. In analog to the thermostat, it may
be assumed to interpolate between the microcanonical and the constant-pressure/constant-
enthalpy ensemble, depending on the coupling constant τP .

4.3.2 The Integral Barostat

In line with the integral thermostat one can introduce a new degree freedom into the sys-
tems Hamiltonian which controls volume fluctuations. This method was first proposed
by Andersen89. The idea is to include the volume as an additional degree of freedom
and to wrte the Hamiltonian in a scaled form, where lengths are expressed in units of the
boxlength L = V 1/3, i.e. qi = L ρi and pi = L πi. Since L is also a dynamical
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quantity, the momentum is not related to the simple time derivative of the coordinates but
∂tqi = L ∂tρi + ρi ∂tL. The extended system Hamiltonian is then written as

H∗ =
1

V 2/3

N∑

i=1

πi

2mi
+ U(V 1/3

ρ) + PexV +
π

2
V

2MV
(91)

where Pex is the prescribed external pressure and πV andMV are a momentum and a mass
associated with the fluctuations of the volume.

The equations of motion which are derived from this Hamiltonian are

∂ρi

∂t
=

1

V 2/3

πi

mi
(92)

∂πi

∂t
=
∂U(V 1/3
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∂ρi

(93)

∂V

∂t
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MV
(94)

∂πV
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1
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mi
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ρi

∂U(q)

∂qi

)

(95)

A transformation to real variables then gives

∂qi

∂t
=

pi

mi
+

1

3V

∂V

∂t
qi (96)

∂pi

∂t
= −∂U(q)

∂qi
− 1

3V

∂V

∂t
pi (97)

∂V

∂t
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pV

MV
(98)

∂pV

∂t
=

1

3V

(
N∑

i=1

pi

mi
− qi

∂U(q)

∂qi

)

︸ ︷︷ ︸

P

−Pex (99)

In the last equation the term in brackets corresponds to the pressure, calculated from the
virial theorem (cf. Appendix A). The associated volume force, introducing fluctuations
of the box volume is therefore controlled by the internal pressure, originating from the
particle dynamics and the external pressure, Pex.

5 Parallel Molecular Dynamics

With the advent of massively parallel computers, where thousands of processors may work
on a single task, it has become possible to increase the size of the numerical problems
considerably. As has been already mentioned in Sec.1 it is in principle possible to treat
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Figure 5. The ideal speedup for parallel applications with 50%, 90%, 99% and 100%
(ideal) parallel work as a function of the number of processors.

multi-billion particle systems. However, the whole success of parallel computing strongly
depends both on the underlying problem to be solved and the optimization of the computer
program. The former point is related to a principle problem which is manifested in the so
called Amdahl’s law100. If a problem has inherently certain parts which can be solved only
in serial, this will give an upper limit for the parallelization which is possible. The speedup
σ, which is a measure for the gain of using multiple processors with respect to a single one,
is therefore bound

σ =
Np

wp +Npws
. (100)

Here, Np is the number of processors, wp and ws is the amount of work, which can be
executed in parallel and in serial, i.e. wp + ws = 1. From Eq.100 it is obvious that
the maximum efficiency is obtained when the problem is completely parallelizable, i.e.
wp = 1 which gives an Np times faster execution of the program. In the other extreme,
whenws = 1 there is no gain in program execution at all and σ = 1, independent ofNp. In
Fig.5 this limitation is illustrated for several cases, where the relative amount for the serial
work was modified. If the parallel work is 50%, the maximum speedup is bound to σ = 2.
If one aims to execute a program on a real massively parallel computer with hundreds or
thousands of processors, the problem at hand must be inherently parallel for 99.99...%.
Therefore, not only big parallel computers garuantee a fast execution of programs, but the
problem itself has to be chosen properly.

Concerning MD programs there are only a few parts which have to be analysed for par-
allelization. As was shown, an MD program consists essentially of the force routine, which
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Machine CPU Network Latency Bandwidth
CRAY T3E-1200 DEC 21164 CRAY T3E ≈ 8µs (2µs) ≈ 350 MB/s
(ZAM Jülich) (600 MHz) interconnect
ZAMpano Intel Pentium III Myrinet ≈ 80µs (15µs) ≈ 65 MB/s
(ZAM Jülich) Xeon (550 MHz)
MPCB Intel Pentium III Fast Eathernet ≈ 470µs ≈ 10 MB/s
(CNRS Orléans) (550 MHz)

Table 1. Interprocessor communication networks for a massively parallel machine (CRAY T3E-1200) with 512
processors and two Linux based PC clusters with 32 (Zampano) and 40 (MPCB) processors.

costs usually more than 90% of the execution time. If one uses neighbor lists, these may
be also rather expensive while reducing the time for the force evaluation. Other important
tasks are the integration of motion, the parameter setup at the beginning of the simulation
and the file input/output (I/O). In the next chapter it will be shown how to parallelize the
force routine. The integrator may be naturally parallelized, since the loop overN particles
may be subdivided and performed on different processors. The parameter setup has either
to be done in serial so that every processor has information about relevant system parame-
ters, or it may be done in parallel and information is distributed from every processor via a
broadcast. The file I/O is a more complicated problem. The message passing interface MPI
I does not offer a parallel I/O operation. In this case, if every node writes some information
to the same file there is, depending on the configuration of the system, often only one node
for I/O, to which internally the data are sent from the other nodes. The same applies for
reading data. Since on this node the data from/for the nodes are written/read sequentially,
this is a serial process which limits the speedup of the execution. The new MPI II standard
offers parallel read/write operations, which lead to a considerable efficiency gain with re-
spect to MPI. However, the efficiency obtained depend strongly on the implementation on
different architectures.

Another serious point is the implementation into the computer code. A problem which
is inherently 100% parallel will not be solved with maximum speed if the program is
not 100% mapped onto this problem. Implementation details for parallel algorithms will
be discussed in the following sections. Independent of the implementation of the code,
Eq.100 gives only an upper theoretical limit which will only be reached in very rare cases.
For most problems it is necessary to communicate data from one processor to another or
even to all other processors in order to take into account data dependencies. This implies an
overhead which depends on the latency and the bandwidth of the interprocessor network.
This strongly depends on the hardware implementation, as is shown in Table 1.

It is shown that the latency time (time which is used to initialize a communication)
differs by a factor of about 50, while bandwidths differ by a factor of about 35. The effect
of the data exchange will be included into Amdahl’s law later on and more realistic speed
up curves will be obtained.

5.1 Particle Decomposition

In order to share the work between Np processors one can distribute N particles in the
beginning of the simulation homogenously onto the processors. If a particle is assigned
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permanently to a certain processor, the method is called particle decomposition (PD). If
particles are distributed in the beginning of the simulation according to their spatial ar-
rangement, topologically neighbored processors will contain neighbored particles in space.
This remains almost true if the system is very viscous or it is a solid. However, in the case
of liquids or gases, the particles will mix after a short time due to diffusive motions and
neighbored processors may store data of particles which are spatially far apart from each
other and vice versa. In order to calculate the interparticle forces, a global communiaction
between processors is necessary.

5.1.1 Replicated Data Algorithm

The simplest way to parallelize a serial program or to write a new parallel code is the so
called replicated data algorithm. Every node stores the coordinates of all N particles in the
system. However, in contrast to a serial program, each processor computes the forces only
of a certain subset of particles N/Np, the so called local particles, i.e. the number of loop
iterations is N2/Np. Having computed the forces on the local particles, the integration
step is performed and the positions and velocities are updated. The next step consists in
broadcasting the new positions to the other Np − 1 processors. This involves a global
communication which can either be implemented in a loop over all processors or can be
realized by optimized library operations, e.g. MPI AllToAll, which sends a subarray
to all other processors, where it is sorted into the whole array, and receives subarrays
from all other processors which are sorted into the local whole array. A straightforward
implementation of this algorithm thus requires Np − 1 send/receive operations.

A more efficient way makes use of a tree-like communication pattern, which needs
only log2(Np) send/receive operations. This algorithm was proposed by Fox et al.101.
Assuming a linear processor topology with periodic boundary conditions this algorithm
works as follows: in a first step all processors receive the particle coordinates from their
neighbored processor to their right. Each processor element (PE) now stores the updated
coordinates from 2 PEs. In the next step the updated coordinates are received from the
second PE to the right, i.e. in this step the information of already four PEs is obtained.
One proceeds in step n to receive the coordinate vector from the 2(n−1)th neighbor to the
right and to send the vector from the local PE to the 2(n−1)th neighbor node to the left.
For the case of 128 PEs the whole communication is finished after 7 steps instead of 127
steps in the case of an all-to-all communication scheme. Note, however, that the total
amount of data which has to be sent is unaffected by the algorithm. Minimized is only the
latency time of the send/receive operations. Furthermore, for the tree-like communication
one has to introduce an temporary array which stores the incoming/outgoing data from/to
neighbored PEs which have to sorted into the global coordinate vector.

The scheme described up to now does not take into account the principle of action
and counteraction (Newton’s 3rd law). Implemented in an optimal way, this may speed
up a computation by nearly a factor of two. An easy way to account for this symmetry
relation is to divide the matrix of particle interactions from PE pi and PE pj (pi 6= pj) into
a checkerboard scheme. Now, interactions are calculated on pi when the coordinate index
of the particles obey the property i > j and i + j is an even number. On the other hand,
interactions on pj are taken into account when i < j and i+ j is an odd number. In a next
step the locally computed forces have to be sent to the Np − 1 processors and Newton’s
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3rd law can be applied. This scheme implies two global communications with coordinates
and forces. It has to checked which method is more preferential. If communication is of
minor importance, i.e. in the case of fast network, the 2nd variant will be faster.

5.1.2 Distributed Data Algorithm - Systolic Loop

The replicated data algorithm is easy and fast to implement. However, the disadvantage
is the storage of a large coordinate vector. This may become difficult when very large
numbers of particles are to be simulated and/or the computer memory is small.

Distributed data algorithms are then favorable. One type of this strategy is the systolic
loop algorithm. In this algorithm a local PE stores only the coordinates, velocities and
forces of the local particles.

Forces on the local PE are calculated in the usual way in a NL(NL − 1)/2-loop, where
NL is the number of local particles. The communication between the PEs are organized in
the following way. The processor indices are extended periodically, i.e. PEi=PEi+P , where
i = 1, . . . , P is the index of the processor. Coordinates are sent from PEj to PEi, with
i < j, where the forces between the particles are calculated explicitly. The coordinates are
stored in a temporary array of length 3NL. Applying the principle of action/counteraction
the calculated force vectors are to be sent from PE pi to PE pj . The total force evaluation on
a tagged particle is completed after (Np − 1)/2 send/receive operations of the coordinates
in the first step and (Np − 1)/2 send/receive operations of the forces in the second step.

The algorithm exhibits a special feature when Np is an even number. In that case half
of the processors do not work in the last loop over processors, since redundant information
would be communicatedc. This implies a nonlinear scaling of the algorithm with increasing
number of PEs, e.g. from P = 1 to P = 2 the maximum speed-up is 4/3. Only for large
numbers of PEs, the effect is reduced and the speed-up approaches a linear behavior. This
effect may be avoided if one refers to the procedure discussed before (cf. Sec.5.1.1). In
the last step of the loop over processors the send operations of coordinates are p1 →
pNp/2−1, . . . , pNp/2 → pNp . In addition one communicates now coordinates also from
pNp/2−1 → p1, . . . , pNp → pNp/2. In the following the force matrix is subdivided and its
elements are only calculated explicitly if the particle index pair i > j and the sum i+ j is
even or if i < j and the sum i + j is odd. In the next step the force vector elements are
send from PE pj to PE pi so that Newton’s third law may be applied.

5.1.3 An Intermediate Algorithm - Hypersystolic Loop

In the case of the systolic loop algorithm, coordinates and forces are sent from one PE to
the next and are stored only temporarily. On the other hand, if these coordinates would be
stored on each PE, the information to calculate all forces in the system would be distributed
in less than Np − 1 send operations. This is illustrated in Table 2 for the case of 6 and 8
processors. In the case of 6 PEs the cycle is finished after 2 communication steps. As is
seen, the interactions p1 → p2 and p1 → p4 are calculated on PE 1, p1 → p5 is calculated

cIn the last communication step PE Np sends data to PE Np/2 where forces are calculated and send back to PE
Np using the principle of action/counteraction. If PE Np/2 would also send its coordinates to PE Np and would
receive the forces back from the same PE this results in a double calculation of forces leading to a wrong result.
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PE 1 2 3 4 5 6
Step 0 1 2 3 4 5 6

1 2 3 4 5 6 1
2 4 5 6 1 2 3

PE 1 2 3 4 5 6 7 8
Step 0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 1
2 4 5 6 7 8 1 2 3
3 5 6 7 8 1 2 3 4

Table 2. Hypersystolic matrices for the cases of 6 and 8 processors. Bold numbers indcate the location of coor-
dinates, which are used to calculate interactions with particles on processor 1.

on PE 4 and p1 → p3 and p1 → p6 are calculated on PE 6 d. This algorithm of sending
and receiving data is called hypersystolic loop102, 103 and the scheme of communicating
processors (cf. Table 2) is called the hypersystolic matrix. As a further example the case
of 8 processors is also shown in Table 2, which finishes after 3 communication steps. For
large numbers of processors this scheme is very promising as a compromise between the
memory intensive replicated data algorithm and the communication intensive systolic loop
algorithm. Unfortunately, however, a general scheme is not yet known how to build up
the hypersystolic matrix, which makes the method unsortable for an arbitrary number of
processors.

5.2 Force Decomposition

Another parallelization strategy aims to distribute the N × N force matrix onto the Np

processors. Two different implementations will be explained in the following.

5.2.1 Data Replicated Algorithm

This algorithm is closely related to the one discussed in Sec. 5.1.1. Particles are distributed
uniformly on the processors and each PE stores the whole information of the N particles.
The algorithm aims to use Newton’s 3rd law, i.e. the calculation of the force matrix is
reduced to the upper triangular matrix Mu, and to distribute the work homogenously, i.e.
each PE should have the same number of force loop iterations. This is achieved in the
following way104. Each PE is assigned a fixed number of rows of Mu having the same
area A on each PE. The total number of force iterations on each PE is given by

A(Lk) =



N −
k−1∑

j=1

Lj −
Lk + 1

2



 (101)

with k ∈ [1, Np] and Lk being the number of rows in Mu being assigned to PE pk, i.e.
∑Np

k=1 Lk = N . As is required for an equal workload, all areas A(Lk) should be equal.
This leads to

Lk =
1

2

(

Qk −
√

Q2
k − 4N(N − 1)

Np

)

(102)

dThe notation pi → pj means thereby the interaction between particles on processor pi with those on processor
pj .
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where

Qk = 2N − 1 − 2

k−1∑

j=1

Lj (103)

This subdivision of forces guarantees equal lengths of force loops on each PE. In order
to get the complete force on every particle, a global reduction of the force vector has to
be done, which can, in analogy to Sec. 5.1.1, also be performed in a tree-like structure,
requiring log2(Np) steps. In order to save a global reduction of positions, the propagation
of positions and velocities from step n to n+ 1 is done for all particles on every PE.

5.2.2 Low-Communication Version

Another type of decomposition of the force matrix requires a quadratic number of pro-
cessors Np = n2, which are arranged in a

√
Np ×

√
Np matrix Pij

105. The particle
distribution on the processors is performed according to the following rule (cf. Fig.6)

Iij =







[ N
Np

(j − 1
2 ) + 1; N

Np
j] : i < j

[ N
Np

(i− 1) + 1; N
Np
i] : i = j

[ N
Np

(i− 1) + 1; N
Np

(i− 1
2 )] : i > j

(104)

where Iij denotes the interval of particle indices, stored on processor Pij . Calculation of
particle interactions is then performed on each local processor without exchange of particle
coordinates with other PEs. In the following the symmetry of the transpose matrix is used
and forces are exchanged between processor Pij and Pji (i 6= j). Now, in every row i of
the matrix is the whole information for the forces which is necessary for of the diagonal
element Pii. Consequently a reduction step is performed in the following to sum up the
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Figure 6. Communication pattern between 16 processors for the case of 16 particles (in-
dicated numbers).

forces row wise on the diagonal elements of the matrix. In a next the particle coordinates
and velocities are propagated only on the processors belonging to the diagonal elements
of Pij . In a last step, the updated positions are distributed according to Eq. 104. This
scheme is less communication intensive as the algorithm discussed in Sec.5.2.1, since it
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requires only the row and column wise replication of data (2(
√

(Np) − 1) operations),
the transpose exchange (one communication operation for every non-diagonal PE) and the
force reduction ((

√

(Np) − 1) operations). This reduction in communication is, however,
achieved by a very much more complicated implementation and a less balanced workload,
since not all processors have to calculate the same number of pair forces (cf. Fig.6).

5.3 Domain Decomposition

The principle of spatial decomposition methods is to assign geometrical domains to dif-
ferent processors. This implies that particles are no longer bound to a certain processor
but will be transfered from one PE to another, according to their spatial position. This
algorithm is especially designed for systems with short range interactions or to any other
algorithm where a certain cut-off in space may be applied. Since neighbored processors
contain all relevant data needed to compute forces on particles located on a given PE,
this algorithm avoids the problem of global communications. Given that the range of in-
teraction between particles is a cut-off radius of size Rc, the size, D of the domains is
preferentially chosen to be D > Rc, so that only the 3d − 1 neighbored processors have
to communicate data (d is the dimension of the problem). Whether this can be fulfilled
depends on the interplay between size of the system and the numbers of processors. If a
small system is treated with a lare number of processors, the domains will be small and
D < Rc. In this case not only the next but also the second or even higher order neighbor
PEs have to send their coordinates to a given PE. For simplicity we assume here D > Rc.

The algorithm then works as follows. Particles are distributed in the beginning of the
simulation to a geometrical region. The domains are constructed to have a rather homo-
geneous distribution of particles on each processor, e.g. for homogeneous bulk liquids the
domains can be chosen as equally sized cuboids which fill the simulation box. In order
to calculate forces between particles on different processors, coordinates of the so called
boundary particles (those which are located in the outer region of size Rb ≥ Rc of the
domains) have to be exchanged. Two types of lists are constructed for this purpose. The
one contains all particle indices, which have left the local domain and which have conse-
quently to be transferred to the neighbored PE. The other one contains all particle indices,
which lie in the outer region of size Rb of a domain. The first list is used to update the
particles’ address, i.e. all information like positions, velocities, forces etc. are sent to the
neighbored PE and are erased in the old domain. The second list is used to send temporar-
ily position coordinates which are only needed for the force computation. The calculation
of forces then operates in two steps. First, the forces due to local particles are computed
using Newton’s 3rd law. In a next step, forces due to the boundary particles are calculated.
The latter forces are thus calculated twice: on the local PE and the neighbored PE. This
extra computation has the advantage that there is no communication step for forces. A
more elaborate scheme has nevertheless been proposed which includes also Newton’s 3rd
law for the boundary particles and thus the communication of forces106, 107. Having fin-
ished the evaluation of forces, the new positions and velocities are evaluated only for local
particles.

A naive method would require 3d − 1 send/receive operations. However, this may
be reduced to 2 logd(3

d − 1) operations with a similar tree-like method, as described in
Sec.5.1.1. The method is described here for the case of d = 2. It may be generalized
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Figure 7. Communication pattern for the domain decomposition algorithm in 2 dimen-
sions.

rather easily. The 4 processors, located directly at the edges of a given one are labeled as
left/right and up/down. Then in a first step, information is sent/received to/from the left and
the right PE, i.e. each processor now stores the coordinates of three PEs (including local
information). The next step proceeds in sending/receiving the data to the up and down PEs.
This step finishes already the whole communication process.

The updating process is not necessarily done in each time step. If the width of the
boundary region is chosen as Rb = Rc + δr, it is possible to trigger the update automat-
ically via the criterion max(|x(t0 + t) − x(t0)|) ≤ δr, which is the maximum change in
distance of any particle in the system, measaured from the last update.

A special feature of this algorithm is the fact that it shows a theoretical superlinear
speed-up if Verlet neighbor lists are used. The construction of the Verlet list requires
N ′(N ′ − 1)/2 + N ′δN operations, where δN is the number of boundary particles and
N ′ is the number of particles on a PE. If the number of PEs is increased as twice as large,
there are N ′/2 particles on each processor which therefore requires N ′/2(N ′/2− 1)/2 +

N ′/2δN operations. If N ′ � δN and N ′2 � N ′ one gets a speed-up factor of ≈ 4!

5.4 Performance Estimations

In order to estimate the performance of the different algorithms on a theoretical basis it is
useful to extend the ideal Amdahl’s law to a more realistic case. The ideal law only takes
into account the degree of parallel work. From that point of view all parallel algorithms
for a given problem should work in the same way. However the communication between
the processors is also a limiting factor in parallel applications and so it is natural to extend
Amdahl’s law in the following way

σ =
1

wp/Np + ws + c(Np)
(105)

where c(Np) is a function of the number of processors which will characterize the different
parallel algorithms. The function will contain both communication work, which depends
on the bandwidth of the network and the effect of the latency time, i.e. how fast the
network responds to the communication instruction. The function c(Np) expresses the
relative portion of communication with respect to computation. Therefore it will depend
in general also on the number of particles which are simulated.
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In the following an analysis for three different types of parallel algorithms is presented.
It is always assumed that the work is strictly parallel, i.e. wp = 1.

5.4.1 All-to-All Communication

An example for the all-to-all communication was given with the systolic loop algorithm.
Every processor sends to all other Np − 1 PEs. The amount of data which is sent re-
duces with increasing Np, since only the data stored on every PE are sent. The work for
communication may therefore be expressed as

c(Np) = (Np − 1)

(

λ+
χ

Np

)

(106)

In Fig.8a the speedup, calculated on basis of Eq.106, is shown for some values of λ and χ.
It is found that the slope of the speedup may become negative! Since the latency time λ
is in general a small number, the third term in the denominator is small compared with the
first. Therefore the speedup curve for small Np is nearly linear. However, since for larger
Np the first term in cp grows nearly linear withNp, it becomes dominant for the behavior of
σ. An interesting observation is that the behavior for large Np is mainly dominated by the
latency time than the amount of data which is sent. With an increase of Np the number of
particles which is stored on each PE is reduced and consequently the ratio of computation
to communication becomes smaller and smaller. For very few data on each PE, it resembles
somebody who wants to give a telephone call but after every spoken word he has to dial
again. One can imagine that even with modern telephones the time for finishing a message
becomes longer and longer.

5.4.2 Tree-Like Communication

A parallel algorithm which uses a tree-like structure to distribute the data was discussed
for the force-decomposition algorithm. In this case the number of message passing calls
reduces to log2(Np) whereas the amount of data to be send to the next PE is doubled in
each communication step. The expression for cp may therefore be written as

c(Np) = log2(Np)λ+

log2(Np)
∑

n=1

2(n−1)χ

Np
(107)

In Fig.8b the speedup behavior is shown. It is found that it is decreased with respect
to the ideal behavior. Due to the slow logarithmic increase of the latency time part no
decreasing behavior of σ is observed. For the unrealistic case where the communication
part is neglected, the speedup is rather close to the ideal line. A considerable deviation is
only found forNp > 500. The result for this algorithm is therefore that it is communication
limited rather than latency time limited.

5.4.3 Local Communication

The spatial decomposition algorithm is an example for the case of local communication.
As was described in Sec.5.3, only six communication steps are required to distribute the
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Figure 8. Estimations of realistic speedup curves if one includes the latency time and bandwidth of the processor
interconnect. It is assumed that the problem can be parallelized for 100%. Different parameter values are compared
for the latency time λ and bandwidth χ for the all-to-all communication (top), a tree like communication (middle)
and local nearest neighbor communications (bottom). The ideal curve neglects communication completely.
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data to neighbored PEs. Therefore the latency time part is constant whereas the amount of
data to be sent and consequently the communication part is decreased with larger Np. The
communication function reads therefore

c(Np) = f(Np)

(

λ+
χ

N
2/3
p

)

, f(Np) =







0 Np = 1
2 Np = 2
4 Np = 4
6 Np ≥ 8

(108)

Here the function f(Np) was introduced to cover also the cases for small numbers of PEs,
where a data exchange is not necessary in each spatial direction. As seen from Fig.8c the
speedup curves are nearly linear with a slightly smaller slope than unity. However, for very
large numbers of PEs the curves will also flatten. Nevertheless, the local communication
model provides the best speedup behavior from all parallel algorithms and seems to be best
suited for large parallel architectures.

5.4.4 Final Remark

Note that the local communication model in its present form is only valid for short range
interaction potentials. If the potential is longer ranged than one spatial domain, the func-
tion f(Np) has to be modified. For long range interactions, all-to-all communications are
generally required. In that case the tree-method may be mostly prefered.

This theoretical analysis demonstrates the importance of a fast interconnect between
processors for the case of molecular dynamics simulations. Not included in the communi-
cation function c(Np) is the bandwidth function of the network. This, however, will only
slightly change Figs.8a-c.

Appendix

A Calculating the Pressure

As is well known from thermodynamics the pressure may be calculated via the virial theo-
rem. However, there are problems in deriving the expression for the pressure when working
in periodic boundary conditions108, due to the missing walls on which the pressure acts.
The usual derivation of the virial theorem where a gas or a liquid is bound in a certain vol-
ume, fails in this case. However, using a ficticious surface, where particles may cross over,
it is possible to obtain a similar expression for the pressure in periodic boundary conditions
(PBC) as in finite volumes, which reads

P =
2

3V

〈 N∑

i=1

1

2
miv

2
i

〉

−
〈 ∂U

∂rij
rij

〉

(109)

=
NkT

V
+

1

3V

〈∑

α

∑

i,j

F(rij − αL)(rij − αL)
〉

(110)

where L is the length of the simulation box and the parameter α accounts for the periodic
images. If the range of interaction between particles is smaller than L/2, this translation
corresponds to the so called minimum image convention.
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A different derivation of the pressure, which is rather convenient for the case of molec-
ular systems, starts from the thermodynamic definition

P = −
(
∂A

∂V

)

T

(111)

where A is the Helmholtz free energy of the system, which can be expanded to give

P =
1

βQ

∂Q

∂V
(112)

where Q is the partition function

Q(V, T ) =
1

N !h3N

∫

dr dp e−βH(r,p) (113)

and H is the system’s Hamiltonian. In order to introduce the volume as an independent
parameter, the following change in variables is performed

r = V 1/3
ρ ; p = V −1/3

π ; π = mV 1/3∂tρ (114)

Therefore the expression for the pressure can be written as

P =
1

N !h3N

1

βQ

∂

∂V

∫ ∫

dρdπ e−βH(V 1/3ρ,V −1/3π) (115)

= − 1

N !h3N

1

Q

∫ ∫

dρdπ
∂

∂V
H(V 1/3

ρ, V −1/3
π) e−βH(V 1/3ρ,V −1/3π) (116)

= −
〈
∂

∂V
H(V 1/3

ρ, V −1/3
π)

〉

T

(117)

In the following two examples are given how to calculate the pressure for specific systems.

A.1 Monatomic Systems

The Hamiltonian for a monatomic system, interacting via pair-forces may be written in
scaled variables as

H =
1

V
2
3

N∑

i=1

π
2

2mi
+

N∑

i,j=1;i<j

U(V
1
3 ρij) (118)

where ρij = |ρi − ρj |. Differentiating with respect to the volume gives

∂H
∂V

= − 2

3V
5
3

N∑

i=1

π
2
i

2mi
+

1

3V
2
3

N∑

i,j=1;i<j

U ′(V
1
3 ρij)ρij (119)

Transforming back this expression into real variables

∂H
∂V

= − 2

3V

N∑

i=1

p2
i

2mi
+

1

3V

N∑

i,j=1;i<j

U ′(rij)rij (120)
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leads to the equation for the pressure

P =
1

3V

〈
N∑

i=1

p2
i

mi
−

N∑

i,j=1;i6=j

U ′(rij)rij

〉

T

(121)

which is the same expression predicted by the Virial theorem109.

A.2 Rigid Nonlinear Molecules

As outlined in Sec.3.4.1 the motion of a rigid body can be described as a translation of the
center-of-mass (COM) and a rotation around the principal axis. The Hamiltonian is there-
fore described in terms of positional and orientational coordinates. The scaling procedure,
Eq.114, is applied again only on the COM coordinates and momenta, since orientational
degrees of freedom have no inherent length scale. The Hamiltonian in scaled variables can
therefore be written as

H =
1

V
2
3

N∑

i=1

π
2
i

2Mi
+

1

2

N∑

i=1

ω
T
i I ωi +

N∑

i,j=1;i<j

Ns∑

a,b=1

U(V
1
3 ρab

ij ) (122)

Here πi denotes the scaled momentum of the COM of molecule i,Mi the molecular mass,
Ns the number of molecular sites and ρab

ij = |ρa
i − ρ

b
j | is the scaled distance between site

a on molecule i and site b on molecule j. The position of site a is thereby given as

ρ
a
i = ρi + da V − 1

3 (123)

where ρi is the position of the COM of molecule i and da the distance vector from the
COM to site a. Since only the center of mass vector, R, is scaled with the volume term,
the distance vector, d, is multiplied by V −1/3. Differentiating Eq.122 with respect to the
volume gives

P =
1

3V

〈

π
2
i

2Mi
−

N∑

i,j=1;i<j

Ns∑

a,b=1

U ′(Rab
ij )

1

Rab
ij

(Rij − dab)Rij

〉

T

(124)

=
1

3V

〈

π
2
i

2Mi
−

N∑

i,j=1;i<j

Ns∑

a,b=1

Fab
ij Rij +

N∑

i=1

Ns∑

a=1

Fa
i da

〉

T

(125)

where Fab
ij is the force, acting from site a of molecule i on site b of molecule j and Fa

i the
total force on site a of molecule i. In order to write Eq.125 in the present form, it was used
that the mean value 〈Fa

i db〉 vanishes. The actual values of the scalar product, however,
may give contributions to the fluctuations of the pressure. The last term in Eq.125 acts as
a kind of correction, which reduces the pressure with respect to a simple superposition of
pairforces in the expression of the virial theorem. This fact may be interpreted as arising
from the constraint forces which keep the molecule rigid.
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