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The acceleration and transport of energetic particles produced by high intensity laser inter-
action with solid targets is studied using a recently developed plasma simulation technique.
Based on a parallel tree algorithm, this method provides a powerful, mesh-free approach to
numerical plasma modelling, permitting ‘whole target’ investigations without the need for
artificial particle and field boundaries. Moreover, it also offers a natural means of treat-
ing three-dimensional, collisional transport effects hitherto neglected or suppressed in con-
ventional explicit particle-in-cell simulation. Multi-million particle simulations of this chal-
lenging interaction regime using the code PEPC (Pretty Efficient Parallel Coulomb-solver:
http://www.fz-juelich.de/zam/pepc) have been performed on the JUMP and
BlueGene/L computers for various open-boundary geometries. These simulations highlight
the importance of target resisitivity and surface effects on the fast electron current flow.

1 Introduction

Numerical simulation of hot, ionized matter poses a constant challenge to the plasma the-
orist because of the effectively unlimited degrees of freedom, extreme nonlinear behaviour
and vast range of length- and timescales characteristic of both natural and laboratory plas-
mas. Usually, the intractability of first-principles simulation is overcome by first simpli-
fying the problem in phase space; replacing individual particle trajectories by a smooth
velocity distribution and then solving a Vlasov-Boltzmann-type equation. By formal ap-
plication of kinetic theory, many problems can be further reduced to the magnetohydrody-
namics picture – the plasma equivalent of the Navier-Stokesequations. Whether particle
or fluid, virtually all plasma modelling over the past four decades has relied on a spatial
mesh to mediate the interplay between plasma particles and their self-consistent electric
and magnetic fields. While these models have proved highly successful, the presence of
a grid ultimately places restrictions on the spatial resolution or geometry which can be
considered – especially in three dimensions.

In the Computer Simulations Division at ZAM, a new mesh-freeplasma simulation
paradigm has been developed which overcomes some of these limitations. Inspired by the
N-body tree algorithms designed to speed up gravitational problems in astrophysics1, this
approach reverts to first principles by computing forces on individual particles directly,
following their trajectories in a Lagrangian, ‘molecular dynamics’ fashion2. We have now
combined this technique with a finite-sized-particle (FSP)model to study particle transport
in high-intensity laser-plasma interactions, a field of fundamental importance to future
compact laser-based particle and radiation sources3.
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2 Lagrangian Finite-Sized-Particle Kinetics

We first give a brief description of the electrostatic FSP model as currently implemented
in PEPC: a generalisation of this scheme to include self-generated magnetic fields and a
set of radiation-free Maxwell equations will be presented elsewhere. The choice of units
is somewhat subtle for macroscopic mesh-free plasma simulation, and contrasts with the
microscopic ‘Debye’ system used, for example in previous work2. The quantities time,
space, velocity, charge and mass are normalized toω−1

p , cω−1
p , c,Npe,Npme respectively,

so that the equation of motion for a particlei with chargeqi and massmi becomes:

mi
dui

dt
=

1

3
qi

∑

i6=j

qjrij

(r2ij + ε2)3/2
+ qiE

p(ri), (1)

whererij = ri − rj is the separation between particlesi andj, andui = γvi is its proper
velocity; γ = (1+ | u |2 /c2)1/2 the relativistic factor. We have also added an external
field Ep, and made use of the plasma frequency definition,ω2

p = 4πe2ne/me for electron
densityne. The constantNp is thus eliminated by setting:

Np =
4π

3
ne

(
c

ωp

)3

.

In a tree code, theO(N) sum over all other particles is replaced by a sum overmultipole
expansions (expanded here up to quadrupole) of groups of particles, whose size increases
with distance from particlei. The number of terms in this sum isO(logN), which even
after the additional overhead in computing the multipoles,results in a substantial saving in
effort for largeN4.

As in classical MD simulation, we cannot use the pure Coulomblaw for point charges
because of the finite timestep, which will cause some particles to experience large, stochas-
tic jumps in their acceleration, eventually destroying theenergy conservation. We therefore
include a softening parameterε in Eq. (1) to ensure thatE(r) → 0 asr → 0. Physically,
we no longer have point charges, but rather charge clouds with a smooth charge density.
It is instructive to compute the latter by applying Gauss’ law to (1) with Ep = 0, giving
(density normalized toene):

ρ(r) =
qε2

(r2 + ε2)5/2
(2)

Charge assignment is then straightforward: the total charge contained within a cuboid
volumeV = xL × yL × zL (in normalized units) is

Q =
∑

i

qi = ρ0V = NeQs,

whereNe is the total number of simulation electrons andQs is the macro-charge car-
ried by them. Since the initial densityρ0 = −1, we simply haveQs = − V

Ne
.

Assigning chargesQs and −QsZ to the electrons and ions respectively, and masses
M e

s = |Qs|,M i
s = A|Qs|, whereZ andA are the atomic number and mass, sets up a

macroscopic plasma system whose internal dynamics is governed solely by Equation 1.
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One can show that the effective collision frequency for thissystem of finite-sized cloud
charges is given by:5, 6

νc

ωp
' Z

30ND

(
λD

ε

)2

=
Z

30Nc

(
ε

λD

)
, (3)

whereNc = 4π
3 neε

3 (the number of particles within the cloud radius) andλD is the Debye
length.

Since electromagnetic wave propagation cannot be includedin the present (electro-
static) model, a ponderomotive standing wave ansatz for thelaser fieldEL is applied at
the vacuum-plasma boundary on the front-side of the target.Essentially the laser field is
represented by a relativistic potential

γp = (1 + Ψ)
1/2

,

where

Ψ = 4a2
0X

2(x)R(r)T (t), (4)

wherea0 is the normalized laser pump strength andX(x), R(r) andT (t) are the longitu-
dinal, radial and temporal components determined by (analytically) solving the Helmholtz
equations for a density step-profile7.

The radiusr = (y2 + z2)1/2 is taken relative to the center of the focal spot. This
form is used in order to create a sharp radial cutoff atr = 2σL (σL is thehalf-width,
half-maximum of the laser spot). The time-dependent componentT (t) provides both the
j × B heating and DC push on the electron density. Finally, the longitudinal and radial
ponderomotive field components (applied as external forcesin the momentum equation for
the electrons) are found fromEp

x = dγp/dx andEp
r = dγp/dr respectively. Despite its

obvious simplicity, this model exhibits surprisingly goodagreement with one-dimensional,
electromagnetic PIC simulations in terms of the field structure, fast electron heating and
ion shock dynamics, provided the electron density scale-lengthL remains small compared
to the laser wavelengthλ .

3 Proton Acceleration in Resistive Targets

In contrast to standard particle-in-cell simulations8, the finite electrical conductivity of the
target can be included quite easily within FSP model. Previous theoretical9 and experimen-
tal10 work has demonstrated that resistive effects already inhibit hot electron penetration
for intensities as low as1017 Wcm−2 . The Spitzer resistivity can be related to the effective
collision frequencỹνei ≡ νc/ωp used in the model (Eq. 3) simply via:

ηe =
meνei

nee2
=

1

ωpε0
ν̃ei (SI)

= 6.3 × 10−6n
−1/2
23 ν̃ei Ω m, (5)

wheren23 is the electron density in units of1023 cm−3.
To illustrate how the inhibition of electron transport affects ion acceleration, we com-

pare two simulations with different target conductivitiesbut otherwise identical parame-
ters: Iλ2= 2.5 × 1019 Wcm−2µm2 (a0 = 4), σL = 15 c/ωp, (square) pulse duration
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τL = 100 fs and initial plasma densityn0/nc = 4. The initial electron temperatures in
the two cases are 5 keV and 500 eV; the particle diametersε = 3 and0.7, giving effective
normalized resistivities̃ηe ≡ ν̃ei = 7 × 10−3 and 0.45 respectively.

In the high-temperature case, the effective hot electron range determined by electro-
static stopping is9 Rh ≈ 80 µm, so we expect the simulation to behave much like a col-
lisionless PIC code would. This is just what we observe in Fig. 1, which shows three-
dimensional snapshots of the ion density and hot electron temperature. This first plot en-
capsulates many of the salient features of high-intensity interactions familiar from 2- and
3D PIC simulations to date: bursts ofj × B-accelerated electrons generated at2ω freely
traversing the target; formation of a ponderomotively driven ion shock on the front side;
and a hot electron Debye sheath being formed on the rear side,pulling ions away from the
surface. We also find that the whole foil has been heated to over 50 keV in under 100 fs,
in agreement with PIC simulations.

Figure 1. Isovolume sequences of ion density (left; threshold nc/20) and mean electron energy (right; threshold
Uh ≥ 10 keV) sliced half-way through the target in thexz-plane for targets with initial normalized resistivities
of a)ηe = 7 × 10−3 and b)ηe = 0.45 at a timeωpt = 650 (170 fs).

Comparing this now with Fig. 1b), a similar sequence for the 500 eV ‘resistive’ sim-
ulation for which the effective hot electron range is now reduced toRh ≈ 1.2 µm by
electrostatic inhibition. This time we see a completely different picture: despite having
energies in the MeV range, the hot electrons are confined to a hemispherical heat-front,
1–2 µm ahead of the shock and are virtually absent from the rear-side vacuum region at
this time. This is consistent with analytical models9 and 2D Fokker-Planck simulations11,
which predict adiffusiverather than free-streaming behaviour at intensities high enough to
induce electrostatic transport inhibition.

The consequences of hot electron transport inhibition for the proton acceleration are
dramatic: the absence (or significantly delayed presence) of the hot Debye sheath on the
rear side clearly suppresses ion acceleration there6. On the other hand, the resistively
induced electric field in front of the shock will act to enhance the front-side acceleration.
These observations are summarized in Fig. 2, which shows howthe relative maximum
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energy of protons originating from the front and rear of the foil respectivelyreversesas the
target resistivity is increased.
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Figure 2. Maximum energy in MeV of protons originating from the front (solid line) and rear (dashed line) of
the foil at 150 fs as a function of target resistivity.

4 Mass-Limited Targets

One of the problems in modelling laser-solid interactions at ever higher intensities is that
the particle fluxes become so large that the periodic or reflective boundary conditions which
are usually applied start to acquire dubious validity. By contrast, the present model side-
steps this issue completely: particles are permitted to fly freely away from and around
the target surface. This feature is essential when modelling ‘mass-limited’ or mesoscopic
targets, such as atomic clusters or thin wires.

An example of a laser interaction with a 1µm -radius wire target is depicted in Fig. 3,
which shows a sequence of ion density iso-volumes, but this time consisting of a 1/2-
wire vertical slice. Superimposed on these plots are slicesof the instantaneous electron
temperature, showing that while the laser is incident, the hottest electrons are actually
confined to the shock region (a,b). At the same time, there is also a strong circulation of
hot electronsaroundthe wire.

A striking feature of this simulation is that the entire mid-section of the wire is pushed
out by the laser: the beamlet visible in Fig. 3d) has detacheditself completely from the
wire and continues to propagate away, spreading as it does so. This is reminiscent of three-
dimensional PIC simulations of double-layer targets in which a proton beam was created
from the low-Z coating on therear-side12. By contrast, the main push in this case comes
unmistakably from the target front side, even though the beamlet comprises ions which
originate from across the whole wire. A further outcome of simulations in this geometry is
a disc-like component in the ion emission appearing at latertimes – also observed in recent
experiments13, 14.
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a) b)

c) d)

Figure 3. Time-sequence of ion density iso-volumeni/nc ≥ 0.25 and electron temperatureTe slice in plane of
laser incidence for a 1/2 wire-section sliced along the wirez-axis. Times shown are a) 200/ωp , b) 400/ωp , c)
600/ωp and d) 800/ωp .

5 Performance

The examples shown here were set up with between 2 and 6 million electrons and ions
uniformly distributed in targets with dimensions12×12×5 µm3. A typical simulation for
a 100fs laser pulse would consume 5000 hours on a single Power4 CPU, but this reduces
to around 50 wall-clock hours when run on 192 processors of the JUMP machine. By
far the most algorithmically demanding part of this code is the tree walk, which in PEPC
combines a previous list-based vectorised algorithm15 with the asynchronous scheme of
Warren & Salmon16 for requesting multipole information on-the-fly from non-local pro-
cessor domains. In the present scheme, rather than performing complete traversals for one
particle at a time, as many ‘simultaneous’ traversals are made as possible, thus maximising
the communication bandwidth by bundling multipole-swaps via collective operations17.
Benchmark tests indicate that the code currently scales up to at least 256 CPUS on JUMP
and 1024 CPUs on the new BlueGene/L architecture – Fig.4.
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Figure 4. Timings on IBM-p690 cluster and BlueGene/L for multi-million charge spheres.

6 Concluding Remarks

Although slower than their mesh-based particle-in-cell equivalents, parallel tree codes of-
fer exciting new possibilities in plasma simulation, particularly where collisions are im-
portant; for modelling complex geometries; or for mass-limited systems in which artificial
boundaries would severely compromise the simulation’s validity. The generic nature of this
algorithm, combined with excellent parallel scalability,means that it can be easily adapted
to other systems dominated by long-range interactions.
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