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1 Relevance of Quantum Computing

Quantum processing of information has become a rapidlyvewplfield of research in
physics, mathematics, computer science, and enginéeaind has led to substantial
progress in quantum computation, quantum communicatidrcantrol of quantum sys-
tems. Quantum computers have become of great interestnisirdae to their potential
of solving certain computationally hard problems such aofing integeréand search-
ing databases faster than a conventional compu@andidate technologies for realizing
guantum computers include trapped ions, atoms in QED eayifiosephson junctions, nu-
clear or electronic spins, quantum dots, and molecular eiagGrover’s quantum search
and Shor’s quantum prime factorization algorithhave been successfully implemented
on systems of up to 7 qubits using liquid NMR technidiiexperimentally demonstrating
the viability of the concept of quantum computation. Reletiite first quantum byte has
been realized using linear ion tr&ps

In spite of this impressive development, a demonstratian ¢fuantum computation
can solve a non-trivial problem is still lacking. To be of gtiaal use, quantum computers
will need error correction, which requires at least severas of qubits and the ability to
perform hundreds of gate operations. This imposes a nunilsérict requirements and
narrows down the list of candidate physical systems. Sitimglaaumbers of qubits in this
range is important to numerically test the scalability abercorrection codes and fault
tolerant quantum computing schemes and their robustnesssdrs typically encountered
in realistic quantum computer architectures.

2 The Need for Simulation

A physically realizable quantum computer is a complex mbagly quantum system. In
order to exercise control over many qubits and to suppressate at which errors are
introduced during a quantum computation, it is in principdeessary to understand the full
time evolution of the whole quantum system. Sources of eraoe the loss of coherence
(decoherence) due to unwanted interaction with the enmieni and systematic errors
due to imperfections of the operational pulse sequences.

In first principle simulations the time dependent behavior can be derived tram
Hamiltonian of the physical model chosen to describe a fipeeardware realization.
Pulses are modeled as time-dependent external fields amtirtbe relevant degrees of
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freedom. The coupling of the environment is taken into aotby including interactions
with other degrees of freedom, also represented by psepide-s

This kind of simulations is needed to analyze decohererstdtieg from interactions
with the environment. Depending on the assumptions thatevheade in deriving the
microscopic Hamiltonian and/or the manner in which the affef the coupling to the
environment is taken into account, the calculation of tred-tiesme quantum dynamics of
the quantum computer readily requires the simulation ofesgs of many (20-40) qubits
over extended periods of time. To perform such very demandomputations, highly
optimized simulation code that runs on different high-eonthputer systems has to be
developed.

3 Simulation of Ideal Quantum Computers

In a first step towards realistic quantum computer simutatise implement so calledeal
simulations where each gate is modeled by a quantum operation thatastésmtaneously
on the internal state of the quantum computer, neglectirly ingplementation imperfec-
tions and interactions with the environment. The drawbadkat the state of the quantum
computer is known only after the application of each gate tiig is sufficient for most
algorithmic purposes.

In contrast to a classical bit the state of an elementaragunit of a quantum com-
puter, the quantum bit or qubit, is described by a two-dinera vector of Euclidean
length one. Denoting two orthogonal basis vectors of thedimoensional vector space by
|0) and|1), the statdi)) of a single qubit can be written as a linear superposition of the
basis stateff)) and|1):

a,
o= alo) + arlt) = (). )

whereag anda; are complex numbers such thag|>+|a;|*> = 1. Useful computations
require more than one qubit. The state of a quantum compdthr M qubits can be
represented in th2" - dimensional Hilbert space as

|’L/}>N = ao___00|0. 00> + ao___01|0. ..01> + ...+ a1...10|1 - 10> + a1...11|1 - 11),
= a0|0) + a1|1> + ...+ a2N,1|2N — 1>
= (ao, a1, ... ;agv_1)" . 2)

According to the rules of quantum mechanics any evolutiotinie means changing
the system state unitarily. Each operation on a quantum atengan be described
by a2¥x 2V dimensional unitary transformatidi = e~*#* acting on the state vector
[") = Uley), with the hermitian matrix{ being the Hamiltonian of the quantum computer
model. In this paper we will not describe any details of quantomputer hardware
modeled by appropriate Hamiltonians. It is sufficient to wnihat an ideal quantum
computer can be modeled by simple spin models such as thgertsidel associating the
two single-spin statesp= | 1) anddowre| |) with the single-qubit basis staté® and
1.
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As the unitary transformatiofl may change all amplitudes simultaneously, a quantum
computer is a massively parallel machine. In order to sitewda arbitrary unitary opera-
tion on a conventional computer the resulting matrix-veataltiplication requires in the
worst case?(22") complex valued arithmetic operations.

As in the case of programming a conventional computer, ixtseenely difficult to
write down explicitly that single one-step operation thahsforms the input state into a
desired output state. Usually a quantum algorithm consfsaissequence of many elemen-
tary gates. These elementary gates are represented bypagesinitary matrices. The
resultant matrix-vector multiplication can be implemehteery efficiently and requires
typically O(2") arithmetic operations per elementary gate. A small set @hehtary
one-qubit gates(such as the Hadamard gate and the Phase shift gate) andiainbto-
qubit gate (such as the controlled NOT gate) are sufficient (but notwelido construct
a universalgquantum computér In the framework of ideal quantum operations any one-
(two-) qubit operation can be decomposed into a sequence2ofdk4) matrix operations
each acting on an orthogonal subspace othalimensional Hilbert space.

In the following we describe an efficient parallel simulatiaf ideal quantum comput-
ers on a high-end computer system that allows simulating (8Y tqubits requiring 3 TB
of memory and a considerable compute power.

4 Quantum Operations

We will discuss in detail the implementation of a typical equebit operation, the Hadamard
gate. This gate is often used to prepare the state of unifoparposition. The Hadamard
operation on a single-qubit state is defined by

1

0) - —(]0) + |1

|0) \/5(|>|>) H—1(1 1)
1 S \1-1)

1) - —(|0) — |1)).

1) ﬂ(l ) —11))

Let us consider a quantum computer consisting of three gjahit its state vector
1¥) = (@000, @001, @010, G011, @100, @101, 110, a111) - Instead of computing the 8x8

matrix appropriate to a Hadamard operatiép acting on qubiy we can computéi,|)
as given by the scheme in Fig. 1.
From this simple example we can learn some characteridtarsymone-qubit operation

on aN-qubit quantum computer influencing qubit= 0, ..., N — 1 by acting on the" -
dimensional state vectdy):

i) H, can be decomposed ing' ~! applications off involving a pair of state vector
components$k, I) with relative stridgl — k| = 29 each.

ii) the (2x2) matrices? operate on orthogonal subspaces of2fe dim Hilbert space.
Hence they commute and computations can be done in parallel.

From i) we can derive that with the exception/@§ all Hadamard gates operate purely
on evenor odd state vector elements. This claim also holds for anyrathantum opera-
tion that does not involve qubit 0. Thus we will split the staector|y)) given by Eq.(2)
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Figure 1. Decomposing a Hadamard transformation actingubit g on a three qubit computéi;|v) into four
parallel applications of the single-qubit Hadamard dgdteH for example splits intc(Ziﬂjil)) — H(Zw(l’) with
k¥l 17

i,5 € {0,1}.

into an even par). ) and its odd counterpal,). For0 < k < 2¥-1 — 1 we define:

e (k) = [$(2F)) and |4, (K)) = [$(2k +1)). 3)

This state vector splitting saves half the effort to detewall pairs of indicesk, () in-
volved in the corresponding one-qubit operation. Eorwith ¢ > 0 consecutive pairs
(k, 1) are mapped to identical pai(s’,!’). = (k',1’), with stride|l’ — k| = 29~1. Only
Hy, shows an even and odd mixing but trivial pattern that is im@eted differently.

5 Parallelization and Computational Resources

More important than gaining half of the integer arithmetitseded for state vector refer-
encing, the splitting decreases communication overhetigtiparallelized simulation code
due to sending and receivimgn-striddersections of the state vectdis.) and|v,). This
leads to a gain of up to 30% of the wall clock time for one-qobitrations (depending on
the system sizé&V and the qubit numberthe gate operates on).

The problem of simulating quantum computers is clearly mgnbounded. Due to
the exponentially increasing amount of memory needed weldped and implemented
a large scale simulation on the Juelich SMP supercomputdrdB90 providing enough
memory to handle a 37 qubit system. Simple storage of thewt&tor in case of a 37 qubit
system requires a memory of 2 TB. An efficient implementatibguantum operations on
that state vector even requires 3 TB of memaory.

The Juelich IBM p690 is aluster of 32 compute nodes each containing 32 Power4+
processors(64bit) and 112 GB memory per node leading to 3.5 TB overalnowy
available to user access. A quantum computer with up/te= 32 qubits reserving at
max. 236 = 64 GB memory to store the complex valued state vector in doutgeigion
can be simulated on one node using 32 processors. In thevfolidable we describe the
typical simulation requirements depending on the systeXi. The last row indicates
the overall memory requirements to efficiently simulaterquen operations.

#qubits N 32 33 34 35 36 37
#procs 32 64 128 256 512 | 1024
#nodes 1 2 4 8 16 32

memory (state vector) 64 GB | 128 GB | 256 GB | 512 GB 1TB | 2TB
memory (operation) | 96 GB | 192 GB | 384GB | 768GB | 1.5TB | 3TB
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Figure 2. Communication pattern for a one-qubit operatiomqobitg > N — p. The N qubit state vector is
partitioned into2P tasks. The computational effort is equally distribute@®a ! disjoint pairs of task§ K, L).
TaskK (L) operates on all odd (even) state vector elemBft$ i+ 1, (|e) k+1.)-

Partitioning the2™V - dimensional state vector inf® = 27 tasksallows to store the state
vector of anN-qubit quantum computer o2 —32 compute nodes equivalent 28" —27
processors with the obvious limitation

N-32<p<N-21. (4)

MPI-based exchange of the lodal ) and|),) allows computation of one-qubit operations
on “nonlocal” qubitsy > N — p. In that case the relevant state vector compongnty,
the single-qubit gate operates on, are separated as wide @sder than) the number of
states per taskl — k| = 29 > 2V P, As shown in Fig.2 task (containing all components
k) sends its locakp. ) x to taskL and receives the local pdit, ), from taskL.

After task K has computed locally the operatiéfiv,) 1 on all (k,1), and taskL
has computed the even pdft|v.) k1, on all (k,1). respectively, both send back their
results: K sendsH |1, ), to L and received |¢.) x from L. After that K contains the
updated vector§y, )k = H|ieo)k. L respectively storehpé/oﬁ = Hl{e/o)r in
place. Thus the operation requires an intermediate buff@®o?~! elements (half the
size of the local state vector). Remember that any one-qgpleitation on qubit O is local.

e Settingp to the maximum given by Eq.(4finest graining)means distributing the
state vector on all processors of the nodes involved. Thagisvalent to a pure MPI
parallelization ansatz. For data exchange within a nod&fBklibrary is mapped to
fast shared memory access.

e Choosing the minimal number of tasks given by Eq(gbarsest graining)eads to
one task per node which means that 32 processors are agdidahht task in parallel.
To do this the core routine (a double loop) is done in parddiell’ = 2¢ = 32
OpenMP threads using shared memory access to the whole remdemnof 64 GB
reserved for the “local” state vector.

e Any other choice op+t = N — 27 with ¢t > 0 leads to ara priori reasonabléybrid
parallelization strategy in the sense that all procesdatsednvolved nodes are used
for computation.

Our detailed investigation on systems of si2és-= 32, 33, 34, 35, 36 shows that differ-
ent OpenMP parallelization strategies using more thanehtts per MPI-task fail to reach
the efficiency of the pure MPI-parallelization. Since wematprovide a large enough ad-
ditional buffer, taski for example is forced to operate “in place” on the state wgutots
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H|v,) ik +1, having write access toglobal=sharedvector. In that case synchronization of
different OpenMP threads becomes necessary (within asagk3lows down computation.

Finest graining in the pure MPI-ansatz benefits from simplgirng of one qubit oper-
ations on nonlocal qubitg > N — p with maximalp according to Eq.(4). Since the stride
|l — k| is as large as (or larger than) the size of the local statewvstbred by each task
these gates operatensecutively on atomponents. The compiler can build two streams
prefetching the entire local state vector.

Since the memory access dominates the time needed to peafquantum operation,
it is crucial a) to minimize consecutive access to widelyasafed memory entries and
b) to use a simple access pattern allowing for efficient (dempglriven) prefetching.
We investigate different ways to code the core routine, tlegérmines the state vector
componentg, [ and performs the computation on local qulaits N — p.

version 1 version 2
do i=imn,imax,i 1 do i=imn,inmax, 2
do k=i,i+i1ln-1 i 2=i and(i,i1ln)
| =k+i 1n k=i-i2+i2/i1n
- | =k+i 1n
enddo k -
enddo i enddo i

Recoding of the core routine shifting from version 1 (nedteg) to version 2 (single
loop) makes OpenMP loop parallelization simpler but hampreaming because of
additional “jumps” in the sequence of indéx To comprehend this we respectively
present a part of a typical sequence of consecutive paitsate gector elementsk, 1) to
be read from memory.

versionl k | O 1 2 3 4 5 6 7116 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 32
| 8 9 10| 11| 12| 13 | 14 | 15| 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 40
version2 k | O 2 4 6 1 3 5 7116 |18 | 20| 22 | 17 | 19 | 21 | 23 | 32
| 8| 10 | 12 | 14 9 11|13 | 15| 24| 26| 28 | 30| 25| 27| 29 | 31| 40

To halve the number of co-resident streams to be prefetaioad fmemory we addi-
tionally split the computation df).) and|y,) into two sequential loops of version 1. This
speeds up computation considerably. We measure that desfassted OpenMP paral-
lelization of version 1 is about 25% faster than the densede@rsion 2. This gain applies
to the usage of 1,2,4 and 8 OpenMP threads.

Analyzing the time needed to computg depending on the qubjtthe operation acts
on (see Fig.3), we can identify three regions accordingfferdint speeds of memory ac-
cess. In case df' = 1 we obtain fast computation far < N — p = 27, because all
state vector components involved are located within pramesiemory. Higher timings
for N —p < g < N —p+ 5 = 32 arise from intra-node communication. The communica-
tion between processors is mapped to shared memory acdash, is/slower than access
to the memory associated to a single processor, but fagteMi?l based inter-node com-
munication forg > 32. Timings for parallelizations using 16 (32) threads per MRicess
are not given in Fig.3, since computation gets slower by tofaaf about 3 (6) compared
to pure MPI. This is due to the machine architecture: eacle i®built up by 4 multichip
modules each containing 8 processors. The memory accdsga @imultichip module is
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Figure 3. Timings for a Hadamard operation on qgtit system sizéV=36 depending on the number of threads
T =1,2,4,8 per MPI-task using@” * 2P = 512 processors.

faster than getting data from memory associated to anotbdufa.

Keeping the local size of the state vector fixed at 2 GB pergssar we compare
the time needed to compute Hadamard operations on all giabitsifferent choices for
the number of tasks and threads. Fig.4 shows the averagegsimji, (/) for a complete
Hadamard transformatioN ! HfL?f H, on different system size¥ depending on the
number of MPI task$®> = 27 and different numbers of OpenMP thredds- 2¢ respecting
t+p = N — 27. Multiple measurements indicate a statistical timing eabmax 5%.
On this error level we identify the usage of one or two Opentiifeads per MPI-task as
optimal. Using 4 threads gives a slightly worse timing.

Taking the best average timing results normalizethia(¢,,(32)) from the L.h.s of
Fig.4 for each system siz& we observe the weak (=local size fixed) scaling behavior
plotted on the r.h.s of Fig.4. Compared to the optimal (wesddling of a constant
min(t.,(N))/ min(t.,(32)) = 1 we still have an efficiency of 70% simulating a 37
gubit-system. The efficiency loss at larger systems is dtieettinearly increasing fraction
of operations on nonlocal qubigs> 32 using internode MPIl-communication.
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Figure 4. Left: average timings,. (V) for a Hadamard operation on different system si2éslepending on
the number of MPI task$? = 2P using7 = 2! OpenMP threads with + p = N — 27. Right: scaling
of the minimal average timings for the system si2és= 32, 33, 34, 35, 36, 37 using 32,64,128,256,512,1024

processors respectively.
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A universal quantum computer also needs two-qubit operasach as the CNOT gate
to incorporate qubit interaction. We illustrate the actadrthe CNOT¢r gate on a two
qubit state that flips the target quitif the control qubitC' is set to|1)

apo 1000 apo
an | 0100 | [ an

CNOTig ao | = 0001 aro |- (5)
a1l 0010 all

Even though the CNOT-gate depending additionally on a obmjubit its enfolded
compute pattern is very similar to the one given in Fig.1. Sh&le of the state vector
components involved in the operation is given by the targestitq/ — k| = 27. With-
out presenting further details our simulator includes Ibathnced implementations of the
controlled NOT and the controlled phase shift operatiorfsadamental two-qubit gates.

6 Results

An efficient parallelization technique was applied to themoney bounded problem of sim-

ulating ideal quantum computers, based on hybrid usage ¢fadé inner node OpenMP

communication using 1,2 and 4 threads. A compact state meferencing reduces signif-

icantly cache misses produced by irregular access to widglgrated parts of the memory.
An algorithm built up from elementary one- and two-qubitagascales very well on the

IBM p690 up to the max. available memory of 3 TB using 1024 pssors (keeping the

local state vector size fixed at 2 GB memory per processor).
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