000051172 001__ 51172
000051172 005__ 20180211172949.0
000051172 0247_ $$2pmid$$apmid:16866964
000051172 0247_ $$2DOI$$a10.1111/j.1469-8137.2006.01770.x
000051172 0247_ $$2WOS$$aWOS:000239010200016
000051172 037__ $$aPreJuSER-51172
000051172 041__ $$aeng
000051172 082__ $$a580
000051172 084__ $$2WoS$$aPlant Sciences
000051172 1001_ $$0P:(DE-Juel1)VDB33618$$aChavarria-Krauser, A.$$b0$$uFZJ
000051172 245__ $$aQuantification of curvature production in cylindrical organs, such as roots and hypocotyls
000051172 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2006
000051172 300__ $$a633 - 641
000051172 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000051172 3367_ $$2DataCite$$aOutput Types/Journal article
000051172 3367_ $$00$$2EndNote$$aJournal Article
000051172 3367_ $$2BibTeX$$aARTICLE
000051172 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000051172 3367_ $$2DRIVER$$aarticle
000051172 440_0 $$04600$$aNew Phytologist$$v171$$x0028-646X$$y3
000051172 500__ $$aRecord converted from VDB: 12.11.2012
000051172 520__ $$aDifferential growth curvature rate (DGCR), defined as the spatial derivative of the tropic speed, was derived as a measure of curvature production in cylindrical organs. Its relation to usual concepts, such as curvature (kappa), rate of curvature (dkappa/dt) and differential growth profiles, was determined. A root gravitropism model, testing the hypothesis of one and two motors, exemplified its capabilities.DGCR was derived using cylindrical geometry and its meaning was obtained through a curvature conservation equation. The root gravitropism model was solved using a discrete difference method on a computer.DGCR described curvature production independently of growth, and was superior to dkappa/dt, which underestimated production. Moreover, DGCR profiles were able to differ between one and two motors, while profiles of kappa and dkappa/dt were not. The choice of the measure of curvature production has a large impact on experimental results, in particular when spatial and temporal patterns of differential growth need to be determined. DGCR was shown to fulfill the accuracy needed in the quantification of curvature production and should thus serve as a helpful tool for measurements.
000051172 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000051172 588__ $$aDataset connected to Web of Science, Pubmed
000051172 650_2 $$2MeSH$$aArabidopsis: anatomy & histology
000051172 650_2 $$2MeSH$$aArabidopsis: growth & development
000051172 650_2 $$2MeSH$$aArabidopsis: physiology
000051172 650_2 $$2MeSH$$aGravitropism: physiology
000051172 650_2 $$2MeSH$$aHypocotyl: anatomy & histology
000051172 650_2 $$2MeSH$$aHypocotyl: growth & development
000051172 650_2 $$2MeSH$$aModels, Biological
000051172 650_2 $$2MeSH$$aPlant Roots: anatomy & histology
000051172 650_2 $$2MeSH$$aPlant Roots: growth & development
000051172 650_7 $$2WoSType$$aJ
000051172 65320 $$2Author$$acurvature
000051172 65320 $$2Author$$agravitropism motor
000051172 65320 $$2Author$$agravitropism
000051172 65320 $$2Author$$ahypocotyl
000051172 65320 $$2Author$$amodel
000051172 65320 $$2Author$$aroot
000051172 773__ $$0PERI:(DE-600)1472194-6$$a10.1111/j.1469-8137.2006.01770.x$$gVol. 0, p. 633 - 641$$p633 - 641$$q0<633 - 641$$tThe @new phytologist$$v0$$x0028-646X$$y2006
000051172 8567_ $$uhttp://dx.doi.org/10.1111/j.1469-8137.2006.01770.x
000051172 909CO $$ooai:juser.fz-juelich.de:51172$$pVDB
000051172 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000051172 9141_ $$y2006
000051172 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000051172 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000051172 970__ $$aVDB:(DE-Juel1)80252
000051172 980__ $$aVDB
000051172 980__ $$aConvertedRecord
000051172 980__ $$ajournal
000051172 980__ $$aI:(DE-Juel1)IBG-2-20101118
000051172 980__ $$aUNRESTRICTED
000051172 981__ $$aI:(DE-Juel1)IBG-2-20101118
000051172 981__ $$aI:(DE-Juel1)ICG-3-20090406