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In the rotation based fast multipole method the accurate determination of the Wigner rotation
matrices is essential. The combination of two recurrence relations and the control of the error
accumulations allow a very precise determination of the Wigner rotation matrices. The recurrence
formulas are simple, efficient, and numerically stable. The advantages over other recursions are
documented. © 2006 American Institute of Physics. [DOI: 10.1063/1.2194548]

I. INTRODUCTION

In several scientific applications such as molecular
dynamics' and plasma physics2 the evaluation of a pairwise
potential is required. Very often this is the most time con-
suming step in a calculation. The direct method to evaluate
these potentials scales quadratically with the number of par-
ticles N which places a severe restraint on the size of systems
which can be treated. One of the methods to achieve linear
scaling is Greengard’s fast multipole method (FMM).** The
FMM expands local charges in multipole expansions. The
fast multipole method can be applied to the evaluation of
r™(n>0) pairwise interactions.

The implementation of the FMM to treat point charges in
a very efficient way is the first step towards the continuous
fast multipole method (CFMM) to calculate charge distribu-
tions arising in density functional and Hartree-Fock calcula-
tions. The ideas of FMM can be applied to the evaluation of
electron repulsion integrals (ERI’s). The computation of the
ERI’s is in general a step which requires O(N*) work regard-
ing the number of basis functions N. By several computa-
tional techniques5 the scaling could be improved signifi-
cantly to O(N?). The use of CFMM gives the possibility to
make a further improvement in scaling, from O(N?) to O(N).
The Coulomb interaction of two charge distributions de-
creases exponentially with increasing separation, and the two
distributions then interact as classical point charges.

An important modification of the FMM leads to the ro-
tation based FMM (Ref. 6) which has a better scaling with
regard to the length of the multipole expansions compared to
the conventional FMM. The rotations are based on the
Wigner rotation martices. The accurate calculation of these
matrices is a requirement for a high accuracy of the rotation
based FMM. Elliott and Board’ have proposed a fast fourier
transform accelerated fast multipole algorithm. The scaling
of this approach is better compared to the scaling of the
rotation based FMM but additional approximation is in-
volved, and therefore, the FMM error bounds are not re-
tained.
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Il. THEORY

The conventional fast multipole method requires O(p*)
work with regard to the length of the multipole expansions p.
O(p?) scaling can be achieved by rotation of the coordinate
system to a position where the chargeless moments O,,, and
M,,, take an explicitly simple form,>®

l

0[,,1(61,0,0) = ?_’5m0’ (1)
I
M,,(r,0,0) = mﬁmo. (2)
O 18 the Kronecker delta,
5 0, m#k 3)
"N, m=k.

In standard presentations the three Euler angles are required
to perform a rotation. In our case we require only two rota-
tions, the first about the Z axis followed by a rotation about
the Y axis. The multipole moments w,,, with respect to the
rotated coordinate system are linear combinations of the
multipole moments w; with respect to the original coordi-
nate system,

! [N +k)! .

The coefficients of the Taylor expansions are rotated simi-
lary,

L U=m) U+ m)! .
,Uvzm=k_2_l %‘ﬁnk(e)elkd)ﬂl’k' (5)

Equations (4) and (5) give the following relation:
I I

E WO Mim = 2 wl,mlu’l,m (6)

m=—[ m=—|

The associated Legendre polynomials included in the multi-
pole moments and in the coefficients of the Taylor expan-
sions can be rotated separately,
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TABLE I. Maximum absolute and relative errors of the computation of the dkm (/2).
First recursion relation Second recursion relation Both recursion relations
14 Ad,absolute(p) Ad,relalive(p) Ad,absnlule(p) Advrelalive(p) Advabsolule(p) Ad,relalive&’)
10 1.3x10713 1.3x 10710 4.4x1071 1.2x10713 2.8x 10716 1.1x10™"
20 1.4x 10710 1.5x107% 1.1x 1071 4.2x10710 22X1071 2.8x 10713
30 7.9%x 1077 8.5 X 10702 3.6X107% 43%x10777 7.4%x 1074 1.1x10™M
40 47X1079 5.2X 10" 2.0X 1079 3.2X107% 1.4%107'2 2.0% 10710
50 3.8 < 10*! 4.3 10%16 32X 1070 7.2% 107 42x 107" 4.6x 10708
60 5.9 X 10" 6.8 X 10*3 2.7 X 100 7.8 X 1002 1.1x107% 1.9%x 1077
70 47X 10 5.6 X 1030 7.8 X 102 2.1 X 10*% 5.7Xx1079%8 7.7X107%
80 1.4X10+13 1.6 10+ 1.7 X 10+06 8.3 X 10 1.0Xx 1070 29X 107
90 5.3x 1016 6.5% 10+ 8.2 X 1008 8.7 10+ 2.1X107% 1.5x 1073
! (L+m)!(I—k)! The rotation about the Z axis is simply a complex multipli-
P, (0+A6) =, mdfnk(A OPH). (7) cation. The only difficult portion is the determination of the
k=—1 —-m)! .

The matrices d' are components of the well known Wigner D
matrices,
Dl L= eimadiﬂkeiky. (8)

m

In the rotated coordinate system the translations and trans-
formations take a more simple form and require only O(p?)
work with regard to the length of the multipole expansions p.

1 i
wp,(a+b) = ]%1‘ (l_—j)!wjm(a), )
% (;L?l'w,_m(a), a<b, (10)
Jj=|m
j—1
/‘l’lm(r b) E (] l) ' /‘L]nl(r) (1 1)

Vector b connecting the centers of the two boxes is parallel
to the Z axis of the rotated coordinate system,

0
b.>0. (12)

Finally, the translated multipole moments and the Taylor co-
efficients are rotated back using the inverse rotation matrices.

rotation matrices d’,(6), 0<@<2m which corresponds to
the rotation about the Y axis. The nonrecursive calculation of
the d' () using the analytical expression requires O(p*)
work and is numerically unstable,

1 [—m)!(l !
dﬁnk = ? 1/ %(1 + sgn(k)cos(ﬁ))'k‘

min(/-m,l-k)

(sin(@)yH S cJVW{”k)
n=max((m+k),0) n

l+k
X( . )(1 +cos(6))"(1 = cos(6))"",

[-m
=0, -I<k<I [s=m=lI, (13)
-1, k<0
sgn(k)=9 0, k=0 (14)
I, k>0,
dﬁnk:(_l)m+kdim’ [>0, -Il=m<0,
Im| < k<1, (15)
dpy= (= 1)y, 1>0, 0=m<l, m<k<l,

(16)

TABLE II. Maximum absolute and relative errors of the computation of the dj,, (/4).

10
20
30
40
50
60
70
80
90

First recursion relation

Second recursion relation

Both recursion relations

Ad.abso]ute(p) Ad,relative(p) Ad,absolule(p) Ad,relative(p) Ad,abso]ute(p) Ad,relative(p)
57X 10715 47X 10714 42x 10713 6.3x 1071 1.0x 10713 47% 10714
1.5x 10713 3.7X 10712 1.9%x 10713 8.0Xx 10712 44X 10715 1.0x 10712
3710712 3.6Xx10710 6.5x 1071 6.5X 1079 43x 1071 48x 101
1.6 X 10710 9.0%x 10798 6.8 %1079 3.4x107% 47x10713 17X 10710
6.7X107% 1.8X107% 7.3%x10°77 9.2x 1079 3.3x 10712 2.7X107%
2.5% 10777 29X 1079 11X 107 9.7 X 1072 2.5%x 1071 42X 1079
8.7 X 107% 4.8x 1070 1.9x 1072 1.2 X 10+02 5.9x10710 2.4%1078
1.3x1079 4.2 10%02 8.6 X 10" 25X 104 3.1X107% 2.7X1077
5.0X 10792 6.6 X 10+ 1.6 X 10+93 1.8 X 10%06 27X 10798 2.7 X 107
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TABLE III. Maximum absolute and relative errors of the computation of the D} (/4, /4, 1/4).

First recursion relation

Second recursion relation

Both recursion relations

P AD,absolule(p) AD,re]ative(p) AD.abso]ule&’) AD,re]alive(p) AD,absolule(p) AD,relative(p)
10 5.7x1071 47x10714 42%10715 6.3X 10714 1.0X 1071 47X 10714
20 1.5%X10713 3.7x 10712 1.9%x 10713 8.0x 10712 3.6X10715 1.0Xx 1072
30 3710712 3.6Xx10710 6.3%x 1071 6.5X 1079 43X 1071 4.8x 107"
40 1.6X 10710 9.0%x 10708 6.8 X 107" 3.4Xx107% 47%10713 1.7%10710
50 6.7x107% 1.8x107% 7.3%107Y7 9.2x1079 3.3x 10712 2.7X107%
60 2.5X 1077 2.9x1079 1.1X10°% 9.7X 1072 2.5%x 1071 42x107%
70 8.7X107% 4.8x 107! 1.9 10792 1.2 X 10702 5.9x10710 2.4X1078
80 1.3%x 1070 4.2 %102 8.4 1070 25X 10404 3.1x107% 2.7%1077
90 5.0% 10792 6.6X 10+ 1.6 X 1093 1.8 X 10%00 2.7X1078 2.7%107%
[ ( ) +k gl (
d==1)"%d_, ., >0, —-Ism<l], 1+ k)
e ok Ueh 120, —1=k<0
—l<k<-m, (17) (I-k)!
dy, =Y P >0, k=0
The essential recursion relation we will use to determine the (1-k)!
. L . 6 (- D*[——=Py, >0, 0<k<I
rotation matrices is given by White and Head-Gordon~ and (1+5)! Ik ’
L !

Edmonds.’

I+ 1) —k(k—1)
d£n+1,k= \/ dl

I(1+1)=m(m+1) ™!

1)

The associated Legendre polynomials Py can be obtained by

a stable recurrence relation,

P00=1,

Py =(21-1)cos(O)Pr_y -1,

Py=(20-1)sin(0)P,_y 4,

>0,

>0,

_ (2l - l)cos(ﬁ)P,_l,k - (l +k— l)Pl—Z,k

lk

[>1

(1-k) ’

, O0=sk<i-1.

(22)

(m+k) sin(6) ;
VI + 1) = m(m + 1) (1 +cos(6)) "™
cos(f) =0, [>0, 0sm<I, -I<k<I,
(18)
J _ (I-m) sin(6) ;
T 10+ 1) = m(m + 1) (1+cos() ™"
cos() =0, [>0, 0=sm<I, (19)
dye=(=1)"m*d o 1>0, -I<m<0,
—-l<k<I. (20)

The starting point for using the recurrence is obtained by the
following property of the rotation matrices:

TABLE IV. Number of floating point instructions n,(p) for the computation
of all matrix elements d},, from d5; up to .

The terms f=+/(I—k)!/(l+k)! can be calculated numerically

stable by a simple recursion,

f — fl,k—l
U=k + D)U+K)

[>0, 0<ks=IL

Jo=1, fo=1,
(23)

Alternatively, the terms f; can be directly included in the

TABLE V. Number of floating point instructions np(p) for the computation

of all matrix elements D}, from DY, up to Dy

Number of floating

Number of floating

P point instructions P point instructions
10 13 505 10 16 585

20 96 310 20 113 670

30 312 415 30 363 255

40 725 820 40 837 340

50 1400 525 50 1607 925

60 2400 530 60 2747010

70 3789 835 70 4326 595

80 5632440 80 6418 680

90 7992 345 90 9095 265
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TABLE VI. Maximum absolute and relative errors of the computation of the
dy (m12).

J. Chem. Phys. 124, 144115 (2006)

TABLE VII. Maximum absolute and relative errors of the computation of
the dby, (/4).

Both recursion relations

Both recursion relations

p Ad,absolute([’) Ad,relative(p) p Ad,absolute(p) Ad,relative(p)
10 0.0 X 10 0.0 X 10*%0 10 2.8x 10710 22%x1071
20 0.0 X 10+ 0.0 X 10+ 20 2.8x 10710 3.1x1071
30 0.0x 10+ 0.0 X 10%%0 30 3.5x 10710 52X10715
40 0.0 < 10*%° 0.0 X 10+ 40 3.9%x 10716 6.4x10715
50 0.0 X 10+ 0.0 X 10+ 50 4.2x 10710 8.1X 10715
60 0.0 X 10 0.0 X 10+ 60 4.7x 10710 9.7x 1071
70 8.7x 10718 9.1x107"7 70 5.2x 10716 1.2x 107"
80 2.1x 1077 2.3x10710 80 5.5x 10710 1.4x107"
90 2.9x 107" 3.4x 10710 90 5.8x 10710 1.5x 10714
100 3.8x 1077 4.7x 10710 100 6.9x 10710 1.9x 1074
200 3.9x 1077 5.3x 10716 200 8.5x 10710 3.3x 10714
300 3.9%x 1077 5.3x%x 10710 300 1.0Xx 1075 491071
400 3.9x 1077 7.0x 10710 400 1.2x 10715 6.4%x 1074
500 3.9x 1077 7.0x 10716 500 1.3% 10715 8.1x 10714
600 3.9x 1077 7.0X 10716 600 1.4X10715 9.5x 1071
700 3.9x 107" 9.4x 10716 700 1.5%x 10715 1.1x10713
800 3.9x 1077 9.4x 10710 800 1.7x 1071 1.3x10713
900 3.9x 1077 9.4x 10716 900 1.8x 10713 1.5x 10713
1000 3.9x 1077 9.4x 10710 1000 1.9Xx 1071 1.6x 10713
recursion of the associated Legendre ~polyn0mials. The d'lnk= (= 1)+l e >0, —I=m<0,
scaled associated Legendre polynomials Py=f; Py, [=0,m '
=<(0=/ can also be calculated numerically stable, —lsks<lL (27)

_ O T
Pyp=1, Py= TSln(e)Pl—l,l—l’ [>0,

I‘;l,l—l = \'21— ICOS(G)ﬁI_lJ_], l> 0,

5 _@l- Dcos(O)P_ ,— (I —k=1)(I+k—-1)P,_,
e V= k)1 +)
0<k<I-1. (24)

bl

[>1,

Unfortunately, Egs. (18) and (19) become unstable in case of
higher moments. We have combined Egs. (18) and (19) with
a second recurrence to overcome the numerical instabilities,

; {+1)-—mm+1) ,
dm,k—l = dm+1,k
(l+1)=k(k-=1)

(m+k) sin(6) p
+ mk>
VI(I+ 1) = k(k = 1) (1 + cos(6))
cos(f) =0, [>0, 0sm<I, -I<ksI,
(25)
dfk - (I+k) sin(6) 5}(
NI+ 1) = k(k = 1) (1 + cos(6))
cos(f) =0, [>0, -—-I<ks<I, (26)

The starting point for using this recurrence is obtained by Eq.
(13) for k=1,

d\y= (= 1)*mg, (1 + cos(6))"(sin(6)™,

LB so o=m=r @9)
S = 2N = m) 11+ m) R

The terms g;,, can be computed by the following numerically
stable recursion:

_1 _ L A1 >0
8oo=1, &= 2l 81-1,00 s
l-m+1
gm=\"—"""&m1 [>0, 0<m=<I. (29)
l+m ’

In addition to the two recurrences the error accumulations
are evaluated for both of the recurrences by summations of
the absolute values of all terms in the recursion relations to
decide which recurrence is more accurate for a given element
of the rotation matrix. Both of the recursion relations should
be used only for cos(6)=0. In case of cos(6) <0 addition
theorems can be used given by Edmonds.’” The recursion
relations are needed only for 0 < < /2,
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r 5mk’ 0= 0
(= DM (= 0) = (= DF7d, (- 0), 757 <g<m
_ll+k6_m :_]l+k5m_, 0:,”_
dfnk(9)=<( ) k=D, . (30)
T
(= D™, (0= m) = (= D*"d, (60— m), m<o<—>
m+k gl 3w
(-D)"*d,,2m—0), —=<6<2m.
\ 2
|
il. RESULTS D! Tmm_ o) gl K oik(4) (33)
All calculations were performed in 64 bits accuracy us- mk\ 4747 4> mk\ 4 )

ing the ANSI/IEEE standard for the floating point represen-
tation. The combination of the two recurrences shows a sig-
nificant improvement of accuracy. Table I shows the
maximum absolute and relative errors for 6=m/2, Table II
for =/4. The computations of all elements of the rotation
matrices in sufficient accuracy are done with MAPLE.'*!!

With respect to the absolute and relative errors the maximum
of the real and imaginary parts of Dfnk are taken,'”

AD,absolute (P) = maX(AR,absolute(p) > AI,absolute(p)) >

_ I I
Ad,abso]ute(p) - max |dmk,c0mputed - dmk,exact ’
0si<sp,~Ism<l~I<k<l
(31) !
AR,absolute(p ) = max |Re(dmk,computed)
0=i<p,~l<m<l-I<k<l
d d
_ mk,computed — “mk,exact 1
Ad,relalive(p ) = max 1] - Re(dmk,exact) >
0<i=p,~l=m=l~I<k<I Dk exact
(32)
. . _ [
Table III shows the maximum absolute and relative errors for Al,absolute(p) = oe lmaXl <t l|Im(dmk,computed)
. . <i<p,-lsm<I-I<ks<
the complete Wigner D matrix for all three Euler angles r
!
equal to /4. = Im(d,,; exac)|» (34)
AD,relative(p) = maX(AR,relative(p)a Al,relalive(p)) >
l l
A (P) _ max RC(D mk,computed) - RC(D mk,exact)
R.relative - >
0=<I<p,-I<m<l,~I<k<I Re(Dink’exaC[)
!
AI i ([7) _ max Im(Dmk,computed) - Im(D k,exact) (35)
relative -
0=<i<p,-I=m=l-I<k<I Im(Dink,exact)

The absolute errors are significant less compared to the work
of Choi et al."? Unfortunately, the authors have reported only
absolute errors up to the the matrix element D38’40. Already
for p=20 our results are about three magnitudes more accu-
rate. For p=30 and p=40 we have obtained five and siXx,
respectively, significant digits more. For p=90 we have still
six correct digits in the mantissa.

The Tables IV and V show the numbers of floating point
instructions for the computation of both the martices D and
d. The floating point instructions are counted for the compu-

tation of all matrix elements, from the elements dj, and DY,
up to the elements d), and D} . The numbers of floating
point instructions depend cubically on p. The values in the
Tables IV and V can be computed by polynomials of third
degree in p. These polynomials are the results of symbolic

. 10,11
summation,

64p> + 159p% + 113p
6 9

nyp) = (36)
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24p3 +85p + 67p
np(p) = 5 : (37)

All calculations run on the IBM p690 cluster at the Research
Centre Jiilich. On an IBM Power4+processor (1.7 GHz)
code of this type performs at roughly 1.7 Gflops. For ex-
ample, the calculation of the first matrix elements d’ , (d, up
to d{g’lo) requires approximately 8 ms. The computation time
for the evaluation of the Wigner rotation matrices within the
FMM is negligible.

An important criterion for the numerical stability is the
accuracy of the calculation of the matrix elements djy, for the
angles 7/2 and /4. We define again maximum absolute and
relative errors,

_ I i
Ad,absolute(p) = max |d00,computed - dOO,exact ’ (38)
o=/<p
1 1
d —d
_ 00,computed 00,exact
Ad,relative(p) = max dl . (39)
O=i=p 00,exact

The relative errors of our approach are in the range of the
machine error of the ANSI/IEEE floating point representa-

J. Chem. Phys. 124, 144115 (2006)

tion of 2752~2.2X 107'° for the angle /2. The relative er-
rors for the angle 7/4 are greater compared to the angle /2
because the recursions are less accurate (Tables VI and VII).

"M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford
University, Oxford, 1990).

2J. M. Dawson, Rev. Mod. Phys. 55, 403 (1983).

L. FE Greengard, The Rapid Evaluation of Potential Fields in Particle
Systems (MIT, Cambridge, 1988).

“L. F. Greengard and V. Rokhlin, J. Comput. Phys. 60, 187 (1985).

1. M. Ugalde and C. Sarasola, Int. J. Quantum Chem. 62, 273 (1997).

®C. A. White and M. Head-Gordon, J. Chem. Phys. 105, 5061 (1996).

"W. D. Elliott and J. A. Board, Jr., SIAM J. Sci. Comput. (USA) 17, 398
(1996).

8C. A. White and M. Head-Gordon, J. Chem. Phys. 101, 6593 (1994).

°A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton
University Press, Princeton, 1957).

" Maple 9 Learning Guide (Maplesoft, Toronto, 2003).

"M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron, and P. DeMarco, Maple 9 Introductory Programming Guide
(Maplesoft, Toronto, 2003).

121. J. Davis, Comput. J. 35, 636 (1992).

Be H Choi, J. Ivanic, M. S. Gordon, and K. Ruedenberg, J. Chem. Phys.
111, 8825 (1999).

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



