001     51338
005     20200423204330.0
024 7 _ |a pmid:16489739
|2 pmid
024 7 _ |a 10.1021/bi051964b
|2 DOI
024 7 _ |a WOS:000235792300002
|2 WOS
024 7 _ |a 2128/714
|2 Handle
037 _ _ |a PreJuSER-51338
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Kottke, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB16784
245 _ _ |a Blue-Light-Induced Changes in Arabidopsis Cryptochrome 1 Probed by FTIR Difference Spectroscopy
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2006
300 _ _ |a 2472 - 2479
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Biochemistry
|x 0006-2960
|0 798
|v 45
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Cryptochromes are blue-light photoreceptors that regulate a variety of responses in animals and plants, including circadian entrainment in Drosophila and photomorphogenesis in Arabidopsis. They comprise a photolyase homology region (PHR) of about 500 amino acids and a C-terminal extension of varying length. In the PHR domain, flavin adenine dinucleotide (FAD) is noncovalently bound. The presence of a second chromophore, such as methenyltetrahydrofolate, in animal and plant cryptochromes is still under debate. Arabidopsis cryptochrome 1 (CRY1) has been intensively studied with regard to function and interaction of the protein in vivo and in vitro. However, little is known about the pathway from light absorption to signal transduction on the molecular level. We investigated the full-length CRY1 protein by Fourier transform infrared (FTIR) and UV/vis difference spectroscopy. Starting from the fully oxidized state of the chromophore FAD, a neutral flavoprotein radical is formed upon illumination in the absence of any exogenous electron donor. A preliminary assignment of the chromophore bands is presented. The FTIR difference spectrum reveals only moderate changes in secondary structure of the apoprotein in response to the photoreduction of the chromophore. Deprotonation of an aspartic or glutamic acid, probably D396, accompanies radical formation, as is deduced from the negative band at 1734 cm(-)(1) in D(2)O. The main positive band at 1524 cm(-)(1) in the FTIR spectrum shows a strong shift to lower frequencies as compared to other flavoproteins. Together with the unusual blue-shift of the absorption in the visible range to 595 nm, this clearly distinguishes the radical form of CRY1 from those of structurally highly homologous DNA photolyases. As a consequence, the direct comparison of cryptochrome to photolyase in terms of photoreactivity and mechanism has to be made with caution.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Arabidopsis Proteins: chemistry
650 _ 2 |2 MeSH
|a Cryptochromes
650 _ 2 |2 MeSH
|a Crystallography, X-Ray
650 _ 2 |2 MeSH
|a Deoxyribodipyrimidine Photo-Lyase: chemistry
650 _ 2 |2 MeSH
|a Deoxyribodipyrimidine Photo-Lyase: metabolism
650 _ 2 |2 MeSH
|a Escherichia coli: metabolism
650 _ 2 |2 MeSH
|a Flavins: metabolism
650 _ 2 |2 MeSH
|a Flavoproteins: chemistry
650 _ 2 |2 MeSH
|a Flavoproteins: metabolism
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Signal Transduction: physiology
650 _ 2 |2 MeSH
|a Spectrophotometry, Ultraviolet
650 _ 2 |2 MeSH
|a Spectroscopy, Fourier Transform Infrared: methods
650 _ 2 |2 MeSH
|a Structural Homology, Protein
650 _ 7 |0 0
|2 NLM Chemicals
|a Arabidopsis Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Cryptochromes
650 _ 7 |0 0
|2 NLM Chemicals
|a Flavins
650 _ 7 |0 0
|2 NLM Chemicals
|a Flavoproteins
650 _ 7 |0 EC 4.1.99.3
|2 NLM Chemicals
|a Deoxyribodipyrimidine Photo-Lyase
650 _ 7 |a J
|2 WoSType
700 1 _ |a Ahmad, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Batschauer, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Heberle, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB572
773 _ _ |a 10.1021/bi051964b
|g Vol. 45, p. 2472 - 2479
|p 2472 - 2479
|q 45<2472 - 2479
|0 PERI:(DE-600)1472258-6
|t Biochemistry
|v 45
|y 2006
|x 0006-2960
856 7 _ |u http://dx.doi.org/10.1021/bi051964b
|u http://hdl.handle.net/2128/714
856 4 _ |u https://juser.fz-juelich.de/record/51338/files/80534.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51338/files/80534.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51338/files/80534.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51338/files/80534.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:51338
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 0
970 _ _ |a VDB:(DE-Juel1)80534
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21