000051339 001__ 51339
000051339 005__ 20200423204330.0
000051339 0247_ $$2pmid$$apmid:16671753
000051339 0247_ $$2DOI$$a10.1021/jp0534131
000051339 0247_ $$2WOS$$aWOS:000237451300063
000051339 0247_ $$2Handle$$a2128/715
000051339 037__ $$aPreJuSER-51339
000051339 041__ $$aeng
000051339 082__ $$a530
000051339 084__ $$2WoS$$aChemistry, Physical
000051339 1001_ $$0P:(DE-HGF)0$$aAtaka, K.$$b0
000051339 245__ $$aOrientational control on the physiological reaction of cytochrome c oxidase tethered to a gold electrode
000051339 260__ $$aWashington, DC$$bSoc.$$c2006
000051339 300__ $$a9339 - 9347
000051339 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000051339 3367_ $$2DataCite$$aOutput Types/Journal article
000051339 3367_ $$00$$2EndNote$$aJournal Article
000051339 3367_ $$2BibTeX$$aARTICLE
000051339 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000051339 3367_ $$2DRIVER$$aarticle
000051339 440_0 $$03694$$aJournal of Physical Chemistry B$$v110$$x1520-6106
000051339 500__ $$aRecord converted from VDB: 12.11.2012
000051339 520__ $$aThe physiological reaction of a membrane protein is reconstituted on a solid-supported electrode by orientational control via the position of an affinity tag. Recombinant cytochrome c oxidase (CcO) from Rhodobacter sphaeroides is immobilized on a chemically modified gold surface via the affinity of a histidine tag (His-tag) to a nickel chelating nitrilotriacetic acid surface. Control of the orientation is achieved by the adsorption of CcO through the His-tag engineered into the two opposite sites of the membrane protein surface. After reconstitution into a lipid layer, the functionality of this enzyme film electrode is probed by surface-enhanced infrared absorption spectroscopy and cyclic voltammetry. We demonstrate that cytochrome c (Cc) binds and initiates the catalytic reaction of CcO only when the latter is orientated with subunit II facing the bulk aqueous phase while Cc does not interact with the oppositely orientated CcO. We infer from the observed catalytic dioxygen reduction at potentials below 240 mV (vs a normal hydrogen electrode) that reduced Cc mediates electron input into CcO in a way similar to the physiological pathway. The quantitative analysis of the IR spectra indicates the presence of an inactive population of Cc bound to CcO at equal amounts as the redox-active population. This methodological approach demonstrates that the orientation of the membrane protein can be controlled depending on the position of the affinity tag. The approach is considered to be of general applicability as the introduction of affinity tags is routine in current biochemistry.
000051339 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000051339 588__ $$aDataset connected to Web of Science, Pubmed
000051339 650_2 $$2MeSH$$aAdsorption
000051339 650_2 $$2MeSH$$aElectrochemistry
000051339 650_2 $$2MeSH$$aElectrodes
000051339 650_2 $$2MeSH$$aElectron Transport Complex IV: chemistry
000051339 650_2 $$2MeSH$$aElectron Transport Complex IV: isolation & purification
000051339 650_2 $$2MeSH$$aElectron Transport Complex IV: physiology
000051339 650_2 $$2MeSH$$aEnzymes, Immobilized: chemistry
000051339 650_2 $$2MeSH$$aGold: chemistry
000051339 650_2 $$2MeSH$$aKinetics
000051339 650_2 $$2MeSH$$aMembranes, Artificial
000051339 650_2 $$2MeSH$$aModels, Molecular
000051339 650_2 $$2MeSH$$aRecombinant Proteins: chemistry
000051339 650_2 $$2MeSH$$aRhodobacter sphaeroides: chemistry
000051339 650_2 $$2MeSH$$aSpectroscopy, Fourier Transform Infrared
000051339 650_2 $$2MeSH$$aSurface Properties
000051339 650_7 $$00$$2NLM Chemicals$$aEnzymes, Immobilized
000051339 650_7 $$00$$2NLM Chemicals$$aMembranes, Artificial
000051339 650_7 $$00$$2NLM Chemicals$$aRecombinant Proteins
000051339 650_7 $$07440-57-5$$2NLM Chemicals$$aGold
000051339 650_7 $$0EC 1.9.3.1$$2NLM Chemicals$$aElectron Transport Complex IV
000051339 650_7 $$2WoSType$$aJ
000051339 7001_ $$0P:(DE-HGF)0$$aRichter, B.$$b1
000051339 7001_ $$0P:(DE-Juel1)VDB572$$aHeberle, J.$$b2$$uFZJ
000051339 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp0534131$$gVol. 110, p. 9339 - 9347$$p9339 - 9347$$q110<9339 - 9347$$tThe @journal of physical chemistry <Washington, DC> / B$$v110$$x1520-6106$$y2006
000051339 8567_ $$uhttp://hdl.handle.net/2128/715$$uhttp://dx.doi.org/10.1021/jp0534131
000051339 8564_ $$uhttps://juser.fz-juelich.de/record/51339/files/80535.pdf$$yOpenAccess
000051339 8564_ $$uhttps://juser.fz-juelich.de/record/51339/files/80535.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000051339 8564_ $$uhttps://juser.fz-juelich.de/record/51339/files/80535.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000051339 8564_ $$uhttps://juser.fz-juelich.de/record/51339/files/80535.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000051339 909CO $$ooai:juser.fz-juelich.de:51339$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000051339 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000051339 9141_ $$y2006
000051339 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000051339 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000051339 9201_ $$0I:(DE-Juel1)VDB58$$d31.12.2006$$gIBI$$kIBI-2$$lBiologische Strukturforschung$$x0
000051339 970__ $$aVDB:(DE-Juel1)80535
000051339 9801_ $$aFullTexts
000051339 980__ $$aVDB
000051339 980__ $$aJUWEL
000051339 980__ $$aConvertedRecord
000051339 980__ $$ajournal
000051339 980__ $$aI:(DE-Juel1)ISB-2-20090406
000051339 980__ $$aUNRESTRICTED
000051339 980__ $$aI:(DE-Juel1)ICS-6-20110106
000051339 980__ $$aFullTexts
000051339 981__ $$aI:(DE-Juel1)IBI-7-20200312
000051339 981__ $$aI:(DE-Juel1)ISB-2-20090406
000051339 981__ $$aI:(DE-Juel1)ICS-6-20110106