001     51341
005     20190625111753.0
024 7 _ |2 DOI
|a 10.1016/j.mee.2005.12.023
024 7 _ |2 WOS
|a WOS:000237581900261
024 7 _ |a altmetric:21815241
|2 altmetric
037 _ _ |a PreJuSER-51341
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Optics
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Kronholz, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB34541
245 _ _ |a Protected Nanoelectrodes of two different Metals with 30 nm Gap-width and Access-window
260 _ _ |a [S.l.] @
|b Elsevier
|c 2006
300 _ _ |a 1702 - 1705
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microelectronic Engineering
|x 0167-9317
|0 4347
|v 83
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Reproducible fabrication of 30 nm metallic nanogaps on silicon chips and their electrochemical characterization are presented. The fabrication of the chip is a combination of an optical lithography step and two electron-beam (e-beam) steps. An optimized adhesion layer/metal layer combination (Ti/Pt/Au) and an adopted two layer e-beam resist are used. Specifically the chip has been covered with different protection layers, access windows located on top of the nanogaps, calibration electrodes and contact pads, respectively. After characterization of the gaps and of the protection layer in 0.1 M H2SO4 aqueous electrolyte, the deposition of Cu onto the nanogaps was demonstrated successfully. (c) 2006 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a nanogaps
653 2 0 |2 Author
|a cyclic voltammetry
653 2 0 |2 Author
|a protection layer
653 2 0 |2 Author
|a electrochemistry
700 1 _ |a Karthäuser, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)130751
700 1 _ |a Meszaros, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB45470
700 1 _ |a Wandlowski, Th.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB9859
700 1 _ |a Van Der Hart, A.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Waser, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1016/j.mee.2005.12.023
|g Vol. 83, p. 1702 - 1705
|p 1702 - 1705
|q 83<1702 - 1705
|0 PERI:(DE-600)1497065-x
|t Microelectronic engineering
|v 83
|y 2006
|x 0167-9317
856 7 _ |u http://dx.doi.org/10.1016/j.mee.2005.12.023
909 C O |o oai:juser.fz-juelich.de:51341
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g IFF
|k IFF-IEM
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB321
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |d 31.12.2006
|g ISG
|k ISG-2
|l Institut für Bio- und Chemosensoren
|0 I:(DE-Juel1)VDB42
|x 2
920 1 _ |d 31.12.2006
|g ISG
|k ISG-3
|l Institut für Grenzflächen und Vakuumtechnologien
|0 I:(DE-Juel1)VDB43
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 4
970 _ _ |a VDB:(DE-Juel1)80540
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)IBN-2-20090406
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)IBN-2-20090406
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21