001     51350
005     20180211162153.0
024 7 _ |2 pmid
|a pmid:16480895
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2005.11.045
024 7 _ |2 WOS
|a WOS:000238012200009
037 _ _ |a PreJuSER-51350
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Barnikol, U. B.
|b 0
|u FZJ
|0 P:(DE-Juel1)131615
245 _ _ |a Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2006
300 _ _ |a 86 - 108
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a NeuroImage
|x 1053-8119
|0 4545
|v 31
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Pattern reversal stimulation provides an established tool for assessing the integrity of the visual pathway and for studying early visual processing. Numerous magnetoencephalographic (MEG) and electroencephalographic (EEG) studies have revealed a three-phasic waveform of the averaged pattern reversal visual evoked potential/magnetic field, with components N75(m), P100(m), and N145(m). However, the anatomical assignment of these components to distinct cortical generators is still a matter of debate, which has inter alia connected with considerable interindividual variations of the human striate and extrastriate cortex. The anatomical variability can be compensated for by means of probabilistic cytoarchitectonic maps, which are three-dimensional maps obtained by an observer-independent statistical mapping in a sample of ten postmortem brains. Transformed onto a subject's brain under consideration, these maps provide the probability with which a given voxel of the subject's brain belongs to a particular cytoarchitectonic area. We optimize the spatial selectivity of the probability maps for V1 and V2 with a probability threshold which optimizes the self- vs. cross-overlap in the population of postmortem brains used for deriving the probabilistic cytoarchitectonic maps. For the first time, we use probabilistic cytoarchitectonic maps of visual cortical areas in order to anatomically identify active cortical generators underlying pattern reversal visual evoked magnetic fields as revealed by MEG. The generators are determined with magnetic field tomography (MFT), which reconstructs the current source density in each voxel. In all seven subjects, our approach reveals generators in V1/V2 (with a greater overlap with V1) and in V5 unilaterally (right V5 in three subjects, left V5 in four subjects) and consistent time courses of their stimulus-locked activations, with three peak activations in V1/V2 (contributing to C1m/N75m, P100m, and N145m) and two peak activations in V5 (contributing to P100m and N145m). The reverberating V1/V2 and V5 activations demonstrate the effect of recurrent activation mechanisms including V1 and extrastriate areas and/or corticofugal feedback loops. Our results demonstrate that the combined investigation of MEG signals with MFT and probabilistic cytoarchitectonic maps significantly improves the anatomical identification of active brain areas.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Attention: physiology
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Evoked Potentials, Visual: physiology
650 _ 2 |2 MeSH
|a Geniculate Bodies: physiology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Magnetoencephalography
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Models, Statistical
650 _ 2 |2 MeSH
|a Neurons: physiology
650 _ 2 |2 MeSH
|a Neurons: ultrasonography
650 _ 2 |2 MeSH
|a Pattern Recognition, Visual: physiology
650 _ 2 |2 MeSH
|a Reaction Time: physiology
650 _ 2 |2 MeSH
|a Reference Values
650 _ 2 |2 MeSH
|a Signal Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Visual Cortex: anatomy & histology
650 _ 2 |2 MeSH
|a Visual Cortex: physiology
650 _ 2 |2 MeSH
|a Visual Pathways: physiology
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a magnetoencephalography
653 2 0 |2 Author
|a visual cortex
653 2 0 |2 Author
|a atlas
653 2 0 |2 Author
|a cytoarchitecture
653 2 0 |2 Author
|a human brain mapping
653 2 0 |2 Author
|a neuroanatomy
700 1 _ |a Amunts, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)131631
700 1 _ |a Dammers, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB261
700 1 _ |a Mohlberg, H.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB1083
700 1 _ |a Fieseler, T.
|b 4
|u FZJ
|0 P:(DE-Juel1)132100
700 1 _ |a Malikovic, A.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB1001
700 1 _ |a Zilles, K.
|b 6
|u FZJ
|0 P:(DE-Juel1)131714
700 1 _ |a Niedeggen, M.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Tass, P. A.
|b 8
|u FZJ
|0 P:(DE-Juel1)131884
773 _ _ |a 10.1016/j.neuroimage.2005.11.045
|g Vol. 31, p. 86 - 108
|p 86 - 108
|q 31<86 - 108
|0 PERI:(DE-600)1471418-8
|t NeuroImage
|v 31
|y 2006
|x 1053-8119
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2005.11.045
909 C O |o oai:juser.fz-juelich.de:51350
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2006
|g IME
|k IME
|l Institut für Medizin
|0 I:(DE-Juel1)VDB54
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)80560
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INB-3-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INB-3-20090406
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21