001     51356
005     20230426083100.0
017 _ _ |a This version is available at the following Publisher URL: http://prb.aps.org
024 7 _ |a 10.1103/PhysRevB.73.195421
|2 DOI
024 7 _ |a WOS:000237950400122
|2 WOS
024 7 _ |a 2128/1441
|2 Handle
037 _ _ |a PreJuSER-51356
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Lounis, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB37196
245 _ _ |a Surface-state scattering by adatoms on noble metals: Ab initio calculations using the Korringa-Kohn-Rostoker Green function method
260 _ _ |a College Park, Md.
|b APS
|c 2006
300 _ _ |a 195421
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|v 73
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a When surface-state electrons scatter at perturbations, such as magnetic or nonmagnetic adatoms or clusters on surfaces, an electronic resonance, localized at the adatom site, can develop below the bottom of the surface-state band for both spin channels. In the case of adatoms, these states have been found very recently in scanning tunneling spectroscopy experiments for the Cu(111) and Ag(111) surfaces. Motivated by these experiments, we carried out a systematic theoretical investigation of the electronic structure of these surface states in the presence of magnetic and nonmagnetic atoms on Cu(111). We found that Ca and all 3d adatoms lead to a split-off state at the bottom of the surface band which is, however, not seen for the sp elements Ga and Ge. The situation is completely reversed if the impurities are embedded in the surface: Ga and Ge are able to produce a split-off state whereas the 3d impurities are not. The resonance arises from the s state of the impurities and is explained in terms of strength and the interaction nature (attraction or repulsion) of the perturbing potential.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
542 _ _ |i 2006-05-24
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Mavropoulos, Ph.
|b 1
|u FZJ
|0 P:(DE-Juel1)130823
700 1 _ |a Dederichs, P. H.
|b 2
|u FZJ
|0 P:(DE-Juel1)130612
700 1 _ |a Blügel, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.73.195421
|b American Physical Society (APS)
|d 2006-05-24
|n 19
|p 195421
|3 journal-article
|2 Crossref
|t Physical Review B
|v 73
|y 2006
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.73.195421
|g Vol. 73, p. 195421
|p 195421
|n 19
|q 73<195421
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 73
|y 2006
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.73.195421
|u http://hdl.handle.net/2128/1441
856 4 _ |u https://juser.fz-juelich.de/record/51356/files/80585.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51356/files/80585.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51356/files/80585.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/51356/files/80585.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:51356
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |d 31.12.2006
|g IFF
|k IFF-TH-I
|l Theorie I
|0 I:(DE-Juel1)VDB30
|x 0
920 1 _ |d 31.12.2006
|g IFF
|k IFF-TH-III
|l Theorie III
|0 I:(DE-Juel1)VDB32
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)80585
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1007/BF01341581
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.56.317
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.036805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.progsurf.2005.10.002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.206803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0003-4916(76)90038-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-003-2299-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.280.5363.567
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.165412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.4175
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.11118
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0305-4608/6/4/018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.16.255
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. H. Vosko
|y 1980
|2 Crossref
|o S. H. Vosko 1980
999 C 5 |a 10.1103/PhysRevLett.50.1998
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.31.805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.115415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.28.528
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21