000005149 001__ 5149
000005149 005__ 20190625111746.0
000005149 0247_ $$2pmid$$apmid:19034899
000005149 0247_ $$2DOI$$a10.1002/hbm.20667
000005149 0247_ $$2WOS$$aWOS:000268698700002
000005149 0247_ $$2altmetric$$aaltmetric:21569982
000005149 037__ $$aPreJuSER-5149
000005149 041__ $$aeng
000005149 082__ $$a610
000005149 084__ $$2WoS$$aNeurosciences
000005149 084__ $$2WoS$$aNeuroimaging
000005149 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000005149 1001_ $$0P:(DE-Juel1)VDB1208$$aPalomero-Gallagher, N.$$b0$$uFZJ
000005149 245__ $$aReceptor Architecture of Human Cingulate Cortex: Evaluation of the Four-Region Neurobiological Model
000005149 260__ $$aNew York, NY$$bWiley-Liss$$c2009
000005149 300__ $$a2336 - 2355
000005149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005149 3367_ $$2DataCite$$aOutput Types/Journal article
000005149 3367_ $$00$$2EndNote$$aJournal Article
000005149 3367_ $$2BibTeX$$aARTICLE
000005149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005149 3367_ $$2DRIVER$$aarticle
000005149 440_0 $$02398$$aHuman Brain Mapping$$v30$$x1065-9471$$y8
000005149 500__ $$aContract grant sponsor: National Institute of Mental Health, of Neurological Disorders and Stroke, of Drug Abuse, and the National Cancer Centre (KZ); The National Institutes of Health and the National Institute of Neurological Disorders and Stroke; Contract grant number: RO1 NS44222.
000005149 520__ $$aThe structural and functional organization of the human cingulate cortex is an ongoing focus; however, human imaging studies continue to use the century-old Brodmann concept of a two region cingulate cortex. Recently, a four-region neurobiological model was proposed based on structural, circuitry, and functional imaging observations. It encompasses the anterior cingulate, midcingulate, posterior cingulate, and retrosplenial cortices (ACC, MCC, PCC, and RSC, respectively). For the first time, this study performs multireceptor autoradiography of 15 neurotransmitter receptor ligands and multivariate statistics on human whole brain postmortem samples covering the entire cingulate cortex. We evaluated the validity of Brodmann's duality concept and of the four-region model using a hierarchical clustering analysis of receptor binding according to the degree of similarity of each area's receptor architecture. We could not find support for Brodmann's dual cingulate concept, because the anterior part of his area 24 has significantly higher AMPA, kainate, GABA(B), benzodiazepine, and M(3) but lower NMDA and GABA(A) binding site densities than the posterior part. The hierarchical clustering analysis distinguished ACC, MCC, PCC, and RSC as independent regions. The ACC has highest AMPA, kainate, alpha(2), 5-HT(1A), and D(1) but lowest GABA(A) densities. The MCC has lowest AMPA, kainate, alpha(2), and D(1) densities. Area 25 in ACC is similar in receptor-architecture to MCC, particularly the NMDA, GABA(A), GABA(B), and M(2) receptors. The PCC and RSC differ in the higher M(1) and alpha(1) but lower M(3) densities of PCC. Thus, multireceptor autoradiography supports the four-region neurobiological model of the cingulate cortex.
000005149 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000005149 588__ $$aDataset connected to Web of Science, Pubmed
000005149 65320 $$2Author$$alimbic system
000005149 65320 $$2Author$$amapping
000005149 65320 $$2Author$$aautoradiography
000005149 65320 $$2Author$$aligand binding
000005149 65320 $$2Author$$ahierarchical clustering analysis
000005149 650_2 $$2MeSH$$aAged
000005149 650_2 $$2MeSH$$aAlgorithms
000005149 650_2 $$2MeSH$$aAutoradiography
000005149 650_2 $$2MeSH$$aCluster Analysis
000005149 650_2 $$2MeSH$$aDensitometry
000005149 650_2 $$2MeSH$$aFemale
000005149 650_2 $$2MeSH$$aGyrus Cinguli: anatomy & histology
000005149 650_2 $$2MeSH$$aGyrus Cinguli: metabolism
000005149 650_2 $$2MeSH$$aHumans
000005149 650_2 $$2MeSH$$aImage Processing, Computer-Assisted
000005149 650_2 $$2MeSH$$aMale
000005149 650_2 $$2MeSH$$aModels, Neurological
000005149 650_2 $$2MeSH$$aMultivariate Analysis
000005149 650_2 $$2MeSH$$aReceptors, Adrenergic: metabolism
000005149 650_2 $$2MeSH$$aReceptors, Cholinergic: metabolism
000005149 650_2 $$2MeSH$$aReceptors, Dopamine D1: metabolism
000005149 650_2 $$2MeSH$$aReceptors, GABA: metabolism
000005149 650_2 $$2MeSH$$aReceptors, Glutamate: metabolism
000005149 650_2 $$2MeSH$$aReceptors, Serotonin: metabolism
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, Adrenergic
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, Cholinergic
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, Dopamine D1
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, GABA
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, Glutamate
000005149 650_7 $$00$$2NLM Chemicals$$aReceptors, Serotonin
000005149 650_7 $$2WoSType$$aJ
000005149 7001_ $$0P:(DE-HGF)0$$aVogt, B.A.$$b1
000005149 7001_ $$0P:(DE-HGF)0$$aSchleicher, A.$$b2
000005149 7001_ $$0P:(DE-HGF)0$$aMayberg, H.S.$$b3
000005149 7001_ $$0P:(DE-Juel1)131714$$aZilles, K.$$b4$$uFZJ
000005149 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.20667$$gVol. 30, p. 2336 - 2355$$p2336 - 2355$$q30<2336 - 2355$$tHuman brain mapping$$v30$$x1065-9471$$y2009
000005149 8567_ $$uhttp://dx.doi.org/10.1002/hbm.20667
000005149 909CO $$ooai:juser.fz-juelich.de:5149$$pVDB
000005149 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005149 9141_ $$y2009
000005149 9131_ $$0G:(DE-Juel1)FUEK409$$aDE-HGF$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000005149 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000005149 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x1
000005149 970__ $$aVDB:(DE-Juel1)112591
000005149 980__ $$aVDB
000005149 980__ $$aConvertedRecord
000005149 980__ $$ajournal
000005149 980__ $$aI:(DE-Juel1)INM-2-20090406
000005149 980__ $$aI:(DE-82)080010_20140620
000005149 980__ $$aUNRESTRICTED
000005149 981__ $$aI:(DE-Juel1)VDB1046