001     5149
005     20190625111746.0
024 7 _ |2 pmid
|a pmid:19034899
024 7 _ |2 DOI
|a 10.1002/hbm.20667
024 7 _ |2 WOS
|a WOS:000268698700002
024 7 _ |a altmetric:21569982
|2 altmetric
037 _ _ |a PreJuSER-5149
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |0 P:(DE-Juel1)VDB1208
|a Palomero-Gallagher, N.
|b 0
|u FZJ
245 _ _ |a Receptor Architecture of Human Cingulate Cortex: Evaluation of the Four-Region Neurobiological Model
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2009
300 _ _ |a 2336 - 2355
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 2398
|a Human Brain Mapping
|v 30
|x 1065-9471
|y 8
500 _ _ |a Contract grant sponsor: National Institute of Mental Health, of Neurological Disorders and Stroke, of Drug Abuse, and the National Cancer Centre (KZ); The National Institutes of Health and the National Institute of Neurological Disorders and Stroke; Contract grant number: RO1 NS44222.
520 _ _ |a The structural and functional organization of the human cingulate cortex is an ongoing focus; however, human imaging studies continue to use the century-old Brodmann concept of a two region cingulate cortex. Recently, a four-region neurobiological model was proposed based on structural, circuitry, and functional imaging observations. It encompasses the anterior cingulate, midcingulate, posterior cingulate, and retrosplenial cortices (ACC, MCC, PCC, and RSC, respectively). For the first time, this study performs multireceptor autoradiography of 15 neurotransmitter receptor ligands and multivariate statistics on human whole brain postmortem samples covering the entire cingulate cortex. We evaluated the validity of Brodmann's duality concept and of the four-region model using a hierarchical clustering analysis of receptor binding according to the degree of similarity of each area's receptor architecture. We could not find support for Brodmann's dual cingulate concept, because the anterior part of his area 24 has significantly higher AMPA, kainate, GABA(B), benzodiazepine, and M(3) but lower NMDA and GABA(A) binding site densities than the posterior part. The hierarchical clustering analysis distinguished ACC, MCC, PCC, and RSC as independent regions. The ACC has highest AMPA, kainate, alpha(2), 5-HT(1A), and D(1) but lowest GABA(A) densities. The MCC has lowest AMPA, kainate, alpha(2), and D(1) densities. Area 25 in ACC is similar in receptor-architecture to MCC, particularly the NMDA, GABA(A), GABA(B), and M(2) receptors. The PCC and RSC differ in the higher M(1) and alpha(1) but lower M(3) densities of PCC. Thus, multireceptor autoradiography supports the four-region neurobiological model of the cingulate cortex.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|a Funktion und Dysfunktion des Nervensystems
|c P33
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Aged
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Autoradiography
650 _ 2 |2 MeSH
|a Cluster Analysis
650 _ 2 |2 MeSH
|a Densitometry
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Gyrus Cinguli: anatomy & histology
650 _ 2 |2 MeSH
|a Gyrus Cinguli: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Models, Neurological
650 _ 2 |2 MeSH
|a Multivariate Analysis
650 _ 2 |2 MeSH
|a Receptors, Adrenergic: metabolism
650 _ 2 |2 MeSH
|a Receptors, Cholinergic: metabolism
650 _ 2 |2 MeSH
|a Receptors, Dopamine D1: metabolism
650 _ 2 |2 MeSH
|a Receptors, GABA: metabolism
650 _ 2 |2 MeSH
|a Receptors, Glutamate: metabolism
650 _ 2 |2 MeSH
|a Receptors, Serotonin: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Adrenergic
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Cholinergic
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Dopamine D1
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, GABA
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Glutamate
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, Serotonin
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a limbic system
653 2 0 |2 Author
|a mapping
653 2 0 |2 Author
|a autoradiography
653 2 0 |2 Author
|a ligand binding
653 2 0 |2 Author
|a hierarchical clustering analysis
700 1 _ |0 P:(DE-HGF)0
|a Vogt, B.A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Schleicher, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Mayberg, H.S.
|b 3
700 1 _ |0 P:(DE-Juel1)131714
|a Zilles, K.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1492703-2
|a 10.1002/hbm.20667
|g Vol. 30, p. 2336 - 2355
|p 2336 - 2355
|q 30<2336 - 2355
|t Human brain mapping
|v 30
|x 1065-9471
|y 2009
856 7 _ |u http://dx.doi.org/10.1002/hbm.20667
909 C O |o oai:juser.fz-juelich.de:5149
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK409
|a DE-HGF
|b Gesundheit
|k P33
|l Funktion und Dysfunktion des Nervensystems
|v Funktion und Dysfunktion des Nervensystems
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|g INM
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)112591
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB1046


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21