000005150 001__ 5150
000005150 005__ 20180208195903.0
000005150 0247_ $$2pmid$$apmid:19564614
000005150 0247_ $$2pmc$$apmc:PMC2710689
000005150 0247_ $$2DOI$$a10.1073/pnas.0810062106
000005150 0247_ $$2WOS$$aWOS:000267972700060
000005150 037__ $$aPreJuSER-5150
000005150 041__ $$aeng
000005150 082__ $$a000
000005150 084__ $$2WoS$$aMultidisciplinary Sciences
000005150 1001_ $$0P:(DE-HGF)0$$aEggermann, E.$$b0
000005150 245__ $$aCholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4
000005150 260__ $$aWashington, DC$$bAcademy$$c2009
000005150 300__ $$a11753 - 11758
000005150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005150 3367_ $$2DataCite$$aOutput Types/Journal article
000005150 3367_ $$00$$2EndNote$$aJournal Article
000005150 3367_ $$2BibTeX$$aARTICLE
000005150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005150 3367_ $$2DRIVER$$aarticle
000005150 440_0 $$05100$$aProceedings of the National Academy of Sciences of the United States of America$$v106$$x0027-8424$$y28
000005150 500__ $$aWe thank M. Muhlethaler, M. Serafin, A. Kerr, S. Williams, and R. Bruno for their comments and W. Hucko for excellent technical assistance. This work was supported by Swiss National Foundation Grant (E. E.), German-Israeli-Foundation Grant I-748-158.1/2002, and the Helmholtz Society.
000005150 520__ $$aNeocortical acetylcholine (ACH) release is known to enhance signal processing by increasing the amplitude and signal-to-noise ratio (SNR) of sensory responses. It is widely accepted that the larger sensory responses are caused by a persistent increase in the excitability of all cortical excitatory neurons. Here, contrary to this concept, we show that ACH persistently inhibits layer 4 (L4) spiny neurons, the main targets of thalamocortical inputs. Using whole-cell recordings in slices of rat primary somatosensory cortex, we demonstrate that this inhibition is specific to L4 and contrasts with the ACH-induced persistent excitation of pyramidal cells in L2/3 and L5. We find that this inhibition is induced by postsynaptic M(4)-muscarinic ACH receptors and is mediated by the opening of inwardly rectifying potassium (K(ir)) channels. Pair recordings of L4 spiny neurons show that ACH reduces synaptic release in the L4 recurrent microcircuit. We conclude that ACH has a differential layer-specific effect that results in a filtering of weak sensory inputs in the L4 recurrent excitatory microcircuit and a subsequent amplification of relevant inputs in L2/3 and L5 excitatory microcircuits. This layer-specific effect may contribute to improve cortical SNR.
000005150 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000005150 588__ $$aDataset connected to Web of Science, Pubmed
000005150 65320 $$2Author$$aacetylcholine
000005150 65320 $$2Author$$amuscarinic receptors
000005150 65320 $$2Author$$asensory cortex
000005150 65320 $$2Author$$asynaptic transmission
000005150 650_2 $$2MeSH$$aAcetylcholine: metabolism
000005150 650_2 $$2MeSH$$aAcetylcholine: pharmacology
000005150 650_2 $$2MeSH$$aAfferent Pathways: physiology
000005150 650_2 $$2MeSH$$aAnimals
000005150 650_2 $$2MeSH$$aNeurons: drug effects
000005150 650_2 $$2MeSH$$aNeurons: metabolism
000005150 650_2 $$2MeSH$$aPotassium Channels, Inwardly Rectifying: metabolism
000005150 650_2 $$2MeSH$$aRats
000005150 650_2 $$2MeSH$$aRats, Wistar
000005150 650_2 $$2MeSH$$aReceptors, Muscarinic: metabolism
000005150 650_2 $$2MeSH$$aSomatosensory Cortex: metabolism
000005150 650_2 $$2MeSH$$aSynaptic Transmission: drug effects
000005150 650_2 $$2MeSH$$aSynaptic Transmission: physiology
000005150 650_7 $$00$$2NLM Chemicals$$aPotassium Channels, Inwardly Rectifying
000005150 650_7 $$00$$2NLM Chemicals$$aReceptors, Muscarinic
000005150 650_7 $$051-84-3$$2NLM Chemicals$$aAcetylcholine
000005150 650_7 $$2WoSType$$aJ
000005150 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, D.$$b1$$uFZJ
000005150 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.0810062106$$gVol. 106, p. 11753 - 11758$$p11753 - 11758$$q106<11753 - 11758$$tProceedings of the National Academy of Sciences of the United States of America$$v106$$x0027-8424$$y2009
000005150 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710689
000005150 909CO $$ooai:juser.fz-juelich.de:5150$$pVDB
000005150 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005150 9141_ $$y2009
000005150 9131_ $$0G:(DE-Juel1)FUEK409$$aDE-HGF$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000005150 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000005150 9201_ $$0I:(DE-82)080010_20140620$$gJARA$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x1
000005150 970__ $$aVDB:(DE-Juel1)112592
000005150 980__ $$aVDB
000005150 980__ $$aConvertedRecord
000005150 980__ $$ajournal
000005150 980__ $$aI:(DE-Juel1)INM-2-20090406
000005150 980__ $$aI:(DE-82)080010_20140620
000005150 980__ $$aUNRESTRICTED
000005150 981__ $$aI:(DE-Juel1)VDB1046