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ABSTRACT: We use grand-canonical-ensemble self-consistent field theory to study blends of both moderately
and strongly segregated homopolymers A and B with some diblock copolymer AC, where C is attracted to B.
We derive an analytical condition for the Flory-Huggins interaction parameters, which describes a balanced
copolymer surfactant AC. We then calculate ternary phase diagrams mainly for blends containing such balanced
surfactants. Among the ordered structures, we generally consider lamellar and hexagonal phases, whereas cubic
phases are included in the calculation when the polymer blends are studied far from the Lifshitz point. The
resulting phase diagrams are highly asymmetric. In particular we show that even a compositionally symmetric
polymer blendsthat is with equal concentrations and molecular weights of the two homopolymers and with
identical polymerization degrees of the copolymer blockssmay organize into either of the two distinct hexagonal
structures, as well as into the lamellar structure. One of these hexagonal phases, with the B-rich matrix, has a
rather low content of the stabilizing copolymer and may therefore, under experimental conditions, disorder into
a polymeric microemulsion. Overall we conclude that the AC diblock can provide a slightly more efficient com-
patibilizer than its AB counterpart, provided that the incompatibility of homopolymers A and B is not too strong.

1. Introduction

The lack of compatibility between different polymers has been
a longstanding problem for the development of new polymeric
alloys. In the majority of cases, a binary blend of homopolymers
A and B is found in a phase separated state, where the two
phases are almost pure liquids A and B.1 Such phase behavior
is due to the large molecular weights of polymers: even if, on
the monomer level, the incompatibility between chemical species
A and B is fairly weak, it may add up to a very strong repulsion
between complete polymer molecules. However many techno-
logical applications require mixing of immiscible homopoly-
mers,2 which can be achieved by adding a “surfactant”.
Traditionally AB diblock copolymers have been used as such
surfactants3 since their blocks A and B show affinity for the A
and B components, respectively, of the homopolymer mixture.
This results in the accumulation of copolymer chains at the A/B
interface which, in turn, reduces its interfacial tension and drives
homopolymers to mix. In this way diblock copolymers are very
similar to nonionic surfactants4 that consist of a hydrophobic
tail and a hydrophilic head and that are used to stabilize water/
oil microemulsions.5

On their own, diblock copolymers form a variety of complex
morphological structures6 such as lamellar, hexagonal, cubic,
gyroid, etc., and this phase behavior becomes even more
complex upon the addition of homopolymers.7-10 In fact this
tendency of block copolymers to form ordered structures may
drive them to segregate in a separate, homopolymer free phase.
The latter will inhibit effective mixing of homopolymers A and
B since such mixing requires that diblock copolymers spread
evenly at the A/B interface. Thus, according to ref 11, to achieve
efficient compatibilization the block copolymer must be de-
signed in such a way that its order-disorder transition temper-
ature is lower than the targeted blending temperature. It is either
that or the copolymer chains must be sufficiently long for

homopolymers to penetrate easily inside the copolymer struc-
tures. (We stress that the conclusion of ref 11 was based on
polymer blends in which the copolymers were shorter than the
homopolymers.) On the other hand high molecular weight
copolymers have large reptation timessa disadvantageous factor
from the point of view of mixing dynamics.

Notwithstanding these difficulties, the macroscopically ho-
mogeneous phase stabilized by a relatively low copolymer
content was observed in the A/B/AB mixtures12-14 and got the
name of a polymeric microemulsion. Until very recently this
phase could be observed only in blends of slightly immiscible
homopolymers A and B. However, in a series of experiments
published in refs 15-17, a polymeric microemulsion was
stabilized in the A/B/AC blend with highly immiscible ho-
mopolymers A and B, where C was attracted to B. The
possibility of enhancing the compatibilization efficiency by
using AC copolymers (instead of their AB counterparts) had
been demostrated in much earlier experimental studies.18 It was
also argued theoretically19 that in the case of attraction between
B and C, homopolymers B can swell the copolymer structure
even if they are larger than the structure size. The importance
of attractive thermodynamic interactions was also shown
experimentally in ref 11, where the PS/PI/PS-PB polymer blend
(PS ) polystyrene, PI) polyisoprene, PB) polybutadiene)
was found in a one-phase state, whereas the PS/PI/PS-PI blend
was found in a macrophase separated state. We note that the
Flory-Huggins parameter for the PI-PB pair is negative,
corresponding to thermodynamic attraction.

The idea of designing balanced surfactants to stabilize
polymeric microemulsions was discussed in ref 16. The term
“a balanced surfactant” initially refers to nonionic surfactants
used in water/oil mixtures, and whose hydrophobic and hydro-
philic interactions are comparable in strength.4 When applied
to A/B/AC polymer blends, the condition of balance requires
that the A-philic and B-philic tendencies of the AC copolymer
are equal. In ref 16, it is also presented as an analytical condition
for the Flory-Huggins interaction parameter,øBC ≈ 0. However,
fulfilling this condition would essentially take us back to the
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symmetric AB copolymer for whichøBC ≡ 0. We have therefore
endeavored to study systematically the phase behavior of A/B/
AC polymer blends and to compare it with that of A/B/AB
blends. In what follows we assume that C is attracted to B, in
agreement with experimental work, although we consider both
small and large values of this attraction and introduce our own,
analytical criterion for a balanced surfactant. The large number
of thermodynamic as well as blend composition parameters
results in a very complex phase behavior of ternary polymer
blends. In particular, we show that not only the chemical
composition of copolymer, but also its relative length with
respect to that of homopolymers, have a drastic influence on
the copolymer compatibilizing efficiency. Furthermore, we find
that the answer to the question whether AB or AC is a better
compatibilizer depends strongly on the degree of incompatibility
between homopolymers A and B. We use the grand-canonical-
ensemble self-consistent field theory (SCFT),9,10,20,21which, like
any other mean-field theory, does not take into account any
fluctuations. This theory is therefore not suitable for the
description of a microemulsion phase since bicontinuous mi-
croemulsions are known to be stabilized by thermal fluctua-
tions.22-24 However, in ternary polymer blends the SCFT results
have been found to be in good agreement with the experimental
measurements of a lamellar phase17 and of copolymer adsorption
at the interface between immiscible homopolymers.25 In par-
ticular, SCFT can be used to determine the minimal copolymer
content needed for A/B/AC blends to remain single phase. This
in turn can be used as a criterion for judging the copolymer
compatibilizing efficiency, as well as for predicting the phase
regions where polymeric microemulsions may exist.

The outline of this paper is as follows. In section 2, we give
a brief introduction to grand-canonical-ensemble self-consistent
field theory and derive SCF equations for A/B/AC mixtures.
To look for solutions which correspond to periodic structures,
we rewrite these equations in the basis function representation
with the basis functions being essentially Fourier harmonics of
required symmetry. In section 3.1 we present the derivation of
an analytical expression for a balanced surfactant, and in sections
3.2 and 3.3, we compare our numerical results for A/B/AB and
balanced A/B/AC blends. The structures that we include in
consideration are mainly lamellar and hexagonal, although bcc
phases are added in those phase diagrams which correspond to
strong segregation (as clearly indicated by the absence of critical
points in these diagrams). The grand-canonical-ensemble SCFT
can also predict the stability of cocontinuous structures such as
the gyroid phase.26 However we find that the gyroid phase
occupies only minor regions in the ternary phase diagrams, and
we generally do not consider it in this paper. In section 4, we
draw our final conclusions with regard to whether AB or AC is
a better compatibilizer, depending on the degree of incompat-
ibility between A and B.

2. Theory

In this section, we generalize the self-consistent field theory
developed in refs 9 and 27 for binary A/AB and ternary
A/B/AB polymer blends.

We consider a ternary blend of homopolymer chains A and
B of polymerization indicesRAN andRBN, respectively, and of
copolymer chains AC with an A block of polymerization degree
fN and a C block of polymerization degree (1- f)N. In the
grand canonical ensemble the number of chains of each type,
nA, nB, or nAC, is not fixed but regulated by the chemical
potentialsµA, µB, and µAC. We apply the model of an ideal
Gaussian chain to describe the flexibility of polymer chains,

whereas the binary volume interactions of polymer segments
are taken into account by the effective interaction parameters
cij , where i, j) A, B, C. The grand canonical partition function
of such a system reads

wherezm ) exp(µm/kBT) is the fugacity of polymer chains of
typem, V is the reference volume, andl is the statistical segment
length which is taken to be the same for all species. TheΦ̂i(r)
stands for the dimensionless microscopic density of species i,
resulting from a given set of polymer trajectoriesrνA(s), rνB(s),
rνAC(s), and the integration in eq 1 is performed over all such
sets. The number of interaction parameters in eq 1 can be
reduced since the self-consistent field equations include only
the linear combinations

the so-called Flory-Huggins parameters, whereas the remaining
dependence oncAA, cBB, andcCC appears only in the additive
constants to the chemical potentials and effective fields. If, in
addition, we require incompressibility of the polymer melt, the
fugacity zAC can be eliminated from the self-consistent field
equations by introducing the new parameters,z1 ) zA(zAC)-RA

andz2 ) zB(zAC)-RB. Thus, the phase behavior of an incompress-
ible ternary blend can be characterized in terms of only two
independent parameters,z1 andz2, and eq 1 takes the form

Z ) ∑
nA)0

∞

∑
nB)0

∞

∑
nAC)0

∞ zA
nAz B

nBzAC
nAC

nA!nB!nAC!
×

∫∏
νA)1

nA

DrνA
(s) exp(-

3

2Nl2
∫0

RAds(drνA

ds
)2) ×

∫∏
νB)1

nB

DrνB
(s) exp(-

3

2Nl2
∫0

RBds(drνB

ds
)2) ×

∫ ∏
νAC)1

nAC

DrνAC
(s) exp(-

3

2Nl2
∫0

1
ds(drνAC

ds
)2) ×

exp(-∑
ij

cij

2
∫dr

V
Φ̂i(r)Φ̂j(r)) (1)

øAB ) cAB -
cAA

2
-

cBB

2

øBC ) cBC -
cBB

2
-

cCC

2

øAC ) cAC -
cAA

2
-

cCC

2
(2)

Z ) ∑
nA)0

∞

∑
nB)0

∞

∑
nAC)0

∞ z1
nAz2

nB

nA!nB!nAC!
×

∫∏
νA)1

nA

DrνA
(s) exp(-

3

2Nl2
∫0

RAds(drνA

ds
)2) ×

∫∏
νB)1

nB

DrνB
(s) exp(-

3

2Nl2
∫0

RBds(drνB

ds
)2) ×

∫ ∏
νAC)1

nAC

DrνAC
(s) exp(-

3

2Nl2
∫0

1
ds(drνAC

ds
)2) ×

exp(-∑
i*j

øij∫dr

V
Φ̂i(r)Φ̂j(r)) (3)
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Following the standard procedure,10 we insert in eq 3 the identity

where the real functionsΦi(r) and the imaginary functions
Wi(r) are independent of the specific polymer configurations,
unlike the microscopic densitiesΦ̂i(r). Performing in eq 3 the
summations overnA, nB, andnAC, we find

whereâ ) 1/kBT andF is the free energy functional

In the above equation,Qm are the partition functions of single
polymer chains subjected to the external fieldsWA, WB, and
WC,

whereV is the system volume. A more efficient way of obtaining
the partition functionsQm, as compared to the direct calculation
of the path integrals in eqs 6 and 7, is from the end-to-end
distance distributionsqm(r, s) of single polymer chains, which
are found as the solutions to the following diffusion equations28

whereqm(r, 0) ≡ 1 for all types of chains. It is straightforward
to check that theQm calculated fromqm via

are identical to those calculated from eqs 6 and 7.

The self-consistent field theory amounts to approximating the
exact free energy,F ) - T ln Z, whereZ is given by eq 4, by
the value of the free energy functional at its saddle point. Here
it is essential to take into account the incompressibility con-
straint, which can be done by subtracting the term∫dr ú(r)(ΦA

+ ΦB + ΦC - 1) from eq 5. The saddle point is therefore
determined as a solution to the following set of variational
equations:

We stress that although formally the integration in eq 4 is
performed over imaginary fields, the saddle point of the free
energy functional, as obtained by solving eqs 12-18, is real. It
is therefore only at this stage that we may suggest thatWA,
WB, andWC play the role of the physical mean fields, produced
by all particles (polymer segments) in the system to act upon a
particle of a given species.

The first step in solving the variational eqs 12-18 is to
calculate the partition functionsQm. For a periodic ordered phase
this can be done most efficiently if we expand all functions of
the position vectorr in an orthonormal basis set of Laplacian
eigenfunctionsfi(r/D), where D is the length of the spatial
period.26 These basis functions are found as a solution to

which should possess the symmetry of the phase considered
and satisfy

Additionally, we order fi in such a way thatλi is a
nondecreasing series. In this paper, we will be considering the
structures of four different symmetriesslamellar, hexagonal,
bcc, and gyroidswhich are described by the basis sets given in
Appendix A. Equations 8-10 can now be solved exactly for
the amplitudesqA

i (s), qB
i (s), and qAC

i (s) of the end-to-end
distance distributions, defined as

We find

1 ) ∫DΦA(r)DΦB(r)DΦC(r)DWA(r)DWB(r)DWC(r) ×
exp[WA(ΦA - Φ̂A) + WB(ΦB - Φ̂B) + WC(ΦC - Φ̂C)]

Z ∝ ∫DΦA(r)DΦB(r)DΦC(r)DWA(r)DWB(r)DWC(r) ×
exp(- âF{ΦA,ΦB,ΦC, WA, WB, WC}) (4)

- NVâF ) z1QA + z2QB + QAC + ∫dr[ΦA(r)WA(r) +

ΦB(r)WB(r) + ΦC(r)WC(r) - øABNΦA(r)ΦB(r) -
øBCNΦB(r)ΦC(r) - øACNΦA(r)ΦC(r)] (5)

Qm )

V{∫Drm(s) exp(- 3

2Nl2
∫0

Rmds[drm(s)

ds ]2)}-1∫Drm(s) ×

exp{- 3

2Nl2
∫0

Rmds[drm(s)

ds ]2

-∫0

RmdsWm[rm(s)]},

m ) A, B (6)

QAC )

V{∫DrAC(s) exp(- 3

2Nl2
∫0

1
ds[drAC(s)

ds ]2)}-1∫DrAC(s) ×

exp{- 3

2Nl2
∫0

1
ds[drAC(s)

ds ]2

- ∫0

f
dsWA[rAC(s)] -

∫f

1
dsWC[rAC(s)]} (7)

∂qA

∂s
) Nl2

6
∆qA - WAqA, 0 < s < RA (8)

∂qB

∂s
) Nl2

6
∆qB - WBqB, 0 < s < RB (9)

∂qAC

∂s
) {Nl2

6
∆qAC - WAqAC, 0 < s < f,

Nl2

6
∆qAC - WCqAC, f < s < 1

(10)

QA ) ∫drqA(r,RA), QB ) ∫drqB(r,RB),

QAC ) ∫drqAC(r, 1) (11)

ΦA ) - z1

∂QA

∂WA
-

∂QAC

∂WA
(12)

ΦB ) - z2

∂QB

∂WB
(13)

ΦC ) -
∂QAC

∂WC
(14)

WA ) øABNΦB + øACNΦC + ú (15)

WB ) øABNΦA + øBCNΦC + ú (16)

WC ) øACNΦA + øBCNΦB + ú (17)

ΦA + ΦB + ΦC ) 1 (18)

∆fi ) - λifi (19)

∫drfi(r)fj(r) ) Vδij (20)

qA(r, s) )∑
i

qA
i (s)fi( r

D) (21)

qB(r, s) )∑
i

qB
i (s)fi( r

D) (22)

qAC(r, s) )∑
i

qAC
i (s)fi( r

D) (23)
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where the matricesÂ, B̂, Ĉ are given by

Here WA
k , WB

k , and WC
k are the amplitudes of the effective

fields, defined in full analogy with eqs 21-23,d2 ) 6D2/Nl2 is
the dimensionless period of an ordered structure, and

Now that qA
i (s), qB

i (s), qAC
i (s) are known, the next step is to

rewrite the variational eqs 12-18 in such a way that they form
a closed set of equations for the amplitudes of the effective
fields. We find

whereD ) K1øACN + K2øBCN + K3øABN and

Usually eqs 29-31 are solved for a set of different length scales
d, and in a final step the free energy is minimized with respect
to d. However, it provides a much faster algorithm if the free
energy is minimized with respect tod at the stage of deriving
all other variational equations. This will add just one extra
equation

to the system of an already very large number of equations.

And it is straightforward to see that both approaches should
give identical results.

Once eqs 29-31 and 33 are solved with respect toWA
i , WB

i ,
WC

i , and d, the amplitudes of the polymer segment densities
can be calculated from

and the free energy of a periodic (or liquid) phase is given by

In general, there can be more than one solution to the variational
equations, corresponding to metastable phases. It is therefore
important to look for the equilibrium phase, which has the lowest
free energy among all other metastable phases, to construct the
phase diagram. The SCFT algorithm described above requires
that we know the symmetry of potential equilibrium phases a
priori. We base our choice of symmetries on the results for the
phase behavior of binary A/AB9 and ternary A/B/AB27 polymer
blends, where the dominant lamellar, hexagonal and bcc phases
have been found. Other more complex phases such as gyroid,
double-diamond, and hexagonally perforated lamellar structures,
have also been examined for the binary A/AB blends.9 Since,
generally, such structures occupy fairly small regions in the
phase space, we leave them out in our calculations (the gyroid
phase is included in one of the diagrams presented below). Once
an equilibrium phase of certain symmetry has been found at
least for one set of blend parameters and any blend composition,
its field amplitudes can then be used as an initial condition when
looking for the same phase for slightly different blend param-
eters and/or blend compositions, and so on. This way we always
track the ordered phases from those of the pure diblock
copolymer melt whose phase behavior is well established.
Occasionally the algorithm may still converge into a metastable
phase which, in most cases, can be detected immediately due
to a substantially higher free energy of such phases. It is then
necessary to take smaller steps when moving in the blend
parameter space.

The Fourier coefficients for each physical quantity form an
infinite series which has to be truncated, and this produces
some numerical errors. In our calculations, we choose the
number of basis functions such that the phase boundaries are
determined with less than 1% error. For the highly swollen
hexagonal phases this often requires 250 basis functions; we
have also made an attempt to calculate a swollen bcc phase
with 600 functions, which is the maximum number we can
manage computationally.

3. Results and Discussion

3.1. The Formula for a Balanced Surfactant. We are
primarily interested in the phase behavior of polymer blends

qA
i (s) ) [exp(Âs)] i1 (24)

qB
i (s) ) [exp(B̂s)] i1 (25)

qAC
i (s) ) {[exp(Âs)] i1, s < f,

∑
j

[exp(Ĉs - Ĉf )] ij[exp(Âf )] j1, s > f (26)

Aij ) -
λi

d2
δij - ∑

k

ΓijkWA
k

Bij ) -
λi

d2
δij - ∑

k

ΓijkWB
k

Cij ) -
λi

d2
δij - ∑

k

ΓijkWC
k (27)

Γijk ) 1
V∫dr fi(r)fj(r)fk(r) (28)

- z1D
∂qA

1(RA)

∂WA
i

- D
∂qAC

1(1)

∂WA
i

) K1(WC
i - WA

i ) +

K3(WB
i - WA

i ) + K2øBCNδi1 (29)

- z2D
∂qB

1(RB)

∂WB
i

) K2(WC
i - WB

i ) + K3(WA
i - WB

i ) +

K1øACNδi1 (30)

- D
∂qAC

1(1)

∂WC
i

) K1(WA
i - WC

i ) + K2(WB
i - WC

i ) +

K3øABNδi1 (31)

K1 ) øAC - øAB - øBC

K2 ) øBC - øAC - øAB

K3 ) øAB - øBC - øAC (32)

z1

∂qA
1(RA)

∂d
+ z2

∂qB
1(RB)

∂d
+

∂qAC
1(1)

∂d
) 0 (33)

ΦA
i ) -z1

∂qA
1(RA)

∂WA
i

-
∂qAC

1(1)

∂WA
i

(34)

ΦB
i ) -z2

∂qB
1(RB)

∂WB
i

(35)

ΦC
i ) -

∂qAC
1(1)

∂WC
i

(36)

-NVâF ) z1qA
1(RA) + z2qB

1(RB) + qAC
1(1) +

∑
i

[ΦA
i WA

i + ΦB
i WB

i + ΦC
i WC

i - øABNΦA
i ΦB

i -

øBCNΦB
i ΦC

i - øACNΦA
i ΦC

i ] (37)
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with øBC negative. It is quite clear though that iføBC is negative
and large, that is, if the attraction between species B and C is
very strong, the copolymer chains will be found mainly in the
B-rich phase. We show now that there exists an optimal value
of øBC for which the A-philic and B-philic tendencies of the
AC chains balance each other, thus causing these chains to locate
at the A/B interface.

For this purpose let us consider only the homogeneous phases.
In this case, the Fourier harmonics withi g 2 are zero for all
the physical quantities, and eqs 24-26 reduce to

Substituting these expressions in eqs 34-36 and introducing
the homopolymer densitiesφAh andφBh, such that

we find

We can now rewrite the free energy given by eq 37 in terms of
φAh andφBh,

whereU is the energy of pair interactions between different
species,

Equations 41 and 42 are equivalent to the Flory-Huggins
expression for the free energy in the grand canonical ensemble.
If we now assumef ) 1/2 and

then the interaction energyU takes the following quadratic form,

whereê ) φAh + φBh andη ) φAh - φBh. For the same values
of f ) 1/2 and øAC given by eq 43, the self-consistent eqs

29-31 result in a very simple relationship betweenφAh and
φBh

To obtain analytical results, we additionally assume thatRA )
RB. In this case, the coexistence between two homogeneous
phases requiresz1 ) z2. If z1 ) z2, any solutionφAh

1, φBh
1 to eq

45 has a twin solutionφAh
2 ) φBh

1, φBh
2 ) φAh

1. According to
eqs 41 and 44, both solutions have the same free energy and
correspond, therefore, to the coexisting phases. The resulting
equation for the coexistence line,

where h ) RAøABN, depends solely on the homopolymer
incompatibility parameterh.

Thus, eq 43 ensures that the coexistence curve of the A-rich
and B-rich homogeneous phases of the A/B/AC blend is
identical to the (symmetric) coexistence curve of the A/B/AB
blend, described by the same values oføABN, RA ) RB andf )
0.5.30 As illustrated in Figure 1, a significant deviation from eq
43 causes the two coexisting liquid phases of the A/B/AC blend
to be rather asymmetric with respect to the copolymer concen-
tration. We therefore view eq 43 as the formula for a balanced
surfactantsit is different from and less restrictive than the
criterion suggested in ref 16, which isøBC ≈ 0. The latter
criterion follows from the requirement that the interfaces
between A-rich and B-rich domains in a microstructure are flat
rather than curved, which is an important factor if one aims at
a bicontinuous microemulsion. Correspondingly, our results
show that takingøBC < 0 drives the regions of stability of the
hexagonal phase with the B-rich matrix to expand at the cost
of the lamellar regions. A possible way to “flatten” the interfaces
in such a hexagonal phase would be to increase the lengthf of
the copolymer block A. This possibility is considered in section
3.3 where we present some numerical results forf * 0.5. The
idea of suppressing the interfacial curvature in asymmetric
polymer blends by choosingf * 0.5 has already been discussed
in ref 31. Therein an analytical expression for the value off is
given which, in A/B/AB blends withRA * RB, is predicted to
correspond to a vanishing spontaneous curvature in the vicinity
of the Scott’s line32 of critical blend compositions. We note in
passing that the balance criterion (eq 43) has been derived
strictly for f ) 0.5, and in this particular case, it seems to
represent the most general definition of a balanced system.
However, it would be very interesting to develop this criterion
further in order to keep the coexistence curves symmetric also
when f * 0.5.

In any case, it makes sense to consider the question of
interface curvature in application to microemulsions only if the
formation of interfaces is at all possible at low copolymer
contentsand this ability is strongly influenced by the balance
condition (43). As shown in Figure 1, rather than simply keeping
the coexistence curves symmetric, eq 43 also ensures that mixing
occurs at the lowest copolymer concentration for all blend
compositions and, in particular, forφAh ) φBh. Thus, violating
the balance condition effectively increases the incompatibility
degree of the two homopolymers, which will most likely still
hold when the microstructures are taken into account. We
believe therefore that if eq 43 is fulfilled, the copolymer content
required to keep the polymer blend single phase will be minimal.
For any given pair of homopolymers, this copolymer content

qA
1(RA) ) exp(- RAWA

1)

qB
1(RB) ) exp(- RBWB

1)

qAC
1(RAC) ) exp[- fWA

1 - (1 - f)WC
1] (38)

ΦA
1 ) φAh + f (1 - φAh - φBh)

ΦB
1 ) φBh

ΦC
1 ) (1 - f)(1 - φAh - φBh) (39)

WA
1 ) - 1

RA
ln

φAh

z1RA

WB
1 ) - 1

RB
ln

φBh

z2RB

WC
1 ) 1

1 - f[ f
RA

ln
φAh

z1RA
- ln(1 - φAh - φBh)] (40)

NVâF )
φAh

RA
ln

φAh
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can be decreased further by tuning eitherøBC or øAC, whichever
of the two we choose as an independent variable. We appreciate
of course that in real experiments these parameters are not
independent and therefore usually change simultaneously.

We also note that the balance condition (43) does not depend
on the polymerization degrees of either copolymers or homo-
polymers. This is connected to the fact that, similar to eq 46
which is independent of the length ratioR, eq 43 has been
derived ignoring any copolymer microstructures. In fact, such
microstructures do not form if the copolymer chains are shorter
than a certain threshold length, in which case only the overall
concentration of copolymer (but not its polymerization degree)
determines whether the blend is mixed or macrophase separated.
Since the idea of eq 43 is to minimize the copolymer content
required to mix A and B when such short copolymer chains
are added, this equation is also independent of the copolymer
molecular weight. Of course, a more complex balance condition
could probably be derived which would also take into account
the microstructures formed by long copolymer chains and which
would, therefore, depend on the length ratioR. However, an
important advantage of eq 43sapart from it being strictly valid
for short copolymer chainssis its very simple form.

In this paper we consider polymer blends satisfying eq 43.
This means that at low copolymer concentrationsswhen a
macrophase separation into homogeneous A-rich and B-rich
phases takes placesthe phase diagrams are symmetric with
respect to theφAh ) φBh isopleth. We note that this does not
imply that the ordered phases too are symmetric at higher
copolymer concentrations. A similar situation is encountered
in water/oil mixtures stabilized by balanced nonionic surfactants,
wherein highly asymmetric lamellar phases have been found.33

3.2. A/B/AB Blends. The phase behavior of the A/B/AB
ternary polymer blends has been studied in great detail by means
of both analytical theory30,34 and self-consistent field calcula-
tions.27,35,36Here we present just a few diagrams, illustrating
the main aspects of this phase behavior, that we find helpful in
understanding similar diagrams for the A/B/AC mixtures. There
are two types of phase diagrams that we consider in this paper:
the first type is the Gibbs triangle, which shows equilibrium
phases or multiphase regions for some fixed values oføijN, RA,
RB, f, and all possible blend compositions. We will only look
at the systems withRA ) RB ≡ R and, unless indicated
otherwise, withf ) 0.5. The second type of diagrams are the
cuts of the Gibbs triangles along theφAh ) φBh isopleth (φAh,
φBh are the homopolymer concentrations) for the fixed values
of øijRN, but with varyingR. In these diagrams, we show the

boundaries of single phase regions in theR vs φc plane, where
φc is the copolymer concentration. The incentive for constructing
such diagrams is to be able to say how much copolymer of
what length we should add in the system, to mix a pair of
homopolymers with a given degree of incompatibility.

A diagram of the second type is shown in Figure 2 for blends
with øABNh ) 4, whereNh ) RN is the homopolymer degree
of polymerization. Such a value of the incompatibility parameter
corresponds to a pair of strongly immiscible homopolymers A
and B (we recall that the critical point of mixing for the binary
homopolymer blend is given byøABNh ) 2). The addition of
copolymer chains to a phase-separated blend of A and B will
drive these homopolymers to mix and form a uniform liquid
phase, given that the copolymer concentration is higher than
some critical value. This critical concentration of copolymer is
given by the Scott’s line32

which is independent of the copolymer molecular weight (the
vertical line in Figure 2). However, eq 47 does not take into
account the formation of ordered structures in the ternary

Figure 1. Curves of coexistence of the A-rich and B-rich homogeneous phases in the A/B/AC blends withøACNh ) 3, øABNh ) 4, R ) 0.5, f )
0.5, and (a)øBCNh ) - 4 or (b) øBCNh ) 2. As indicated by nonhorizontal tie-lines, significant deviations from eq 43 in either direction lead to
coexisting phases which are highly asymmetric with respect to the copolymer content. The same dotted line in both figures shows the entirely
symmetric coexistence curve forøBCNh ) - 1 (the corresponding horizontal tie-lines are not shown). The one-phase and two-phase regions are
marked by “D” (disordered phase) and “2p”, respectively.

Figure 2. R vs φc diagram for the compositionally symmetric
A/B/AB blends withøABNh ) 4. The vertical line represents the Scott’s
line which ends at the Lifshitz point (full circle). The lamellar phase
(“L”), appearing below the Lifshitz point, is bounded by the spinodal
line on the right and, on the left, by the line of the first-order transitions
into the coexisting A-rich and B-rich homogeneous (or disordered)
phases. The one-phase, two-phase and three-phase regions which
involve one or more homogeneous phases are marked by “D”, “2p”,
and “3p”, respectively.

φc ) 1 - 2
øABNh

(47)
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polymer blends. In fact, if the copolymer chains are long enough,
the ternary blend will microphase (rather than macrophase)
separate with decreasing the copolymer concentrationφc. For
φAh ) φBh this microphase separation occurs continuously
through the critical point which can be calculated using the
random phase approximation (RPA).37 The derivation of RPA
for A/B/AC blends is contained in Appendix B of this paper.
For brevity, we will refer to the locus of these critical points,
which are shown in Figure 2 for different values ofR, as the
spinodal line. We note that the order-disorder transition,
induced by varying the copolymer concentrationφc, can only
be observed in the A/B/AB blends withøABN < 10.5. This
condition ensures that the pure copolymer is found in the
disordered phase,26 since the energy gain associated with the
formation of microdomains, is less significant than the entropy
loss due to the chain stretching. The large stretching of chains
required in this case is essential to fulfill the incompressibility
condition in the areas near the microdomain centers. At the same
time, fairly mobile homopolymer chains can easily distribute
inside a microdomain structure and lower its free energy by
relieving the stress associated with the incompressibility con-
straint. Hence, forøABN < 10.5, “diluting” a copolymer melt
with some relatively short homopolymer chains, which on their
own cannot form any ordered phases, actually drives this melt
to order. In the opposite case oføABN > 10.5, the pure
symmetric copolymer is found in the lamellar phase, which is
also the equilibrium phase forφc < 1. In Figure 2 the order-
disorder transition of the pure copolymer melt is marked as the
crossing point of the spinodal line and theφc ) 1 axis at
R≈0.38. The crossing point of the spinodal line with the Scott’s
line is referred to as an isotropic Lifshitz point,38 and it marks
the onset of ordered structures in a given polymer blend. For
an A/B/AB polymer blend, the value ofR at the Lifshitz point
is given by30

whereas the copolymer concentration is found from eq 47. Thus,
in the polymer blend withøABNh ) 4, we will only be able to
observe some ordered structures if the copolymer chains are
longer thanN ) x2Nh (cf. Figure 2).

The formation of ordered structures is illustrated in Figure 3
which shows a Gibbs triangle for a blend withøABNh ) 4 and

R ) 0.5. In this diagram we have included only the lamellar
and hexagonal ordered structures, which emerge via a critical
point. For small concentrations of copolymer, when its com-
patibilizing effect is negligible, the polymer blend macrophase
separates into an A-rich and a B-rich phase. The triangles in
Figure 3 bound the regions of three-phase coexistence, in
particular, we see a large, centrally placed region of coexistence
between the lamellar and two disordered phases. The coexisting
lamellar phase has a quite low copolymer content, approximately
30%, which is remarkable given the strong incompatibility of
A and B. Of course, the stability of the lamellar phase with
such a low copolymer content is the result of the self-consistent
field theory, which does not take into account local concentration
fluctuations. We anticipate that, in real polymer blends, this
phase may lose its long-range order and transform into a
bicontinuous microemulsion. This conclusion is also supported
by the fact that in experimental phase digrams,12,13 the micro-
emulsion phase is always found on the smallφc side of the
lamellar phase. Therefore, even if we cannot calculate the
properties of a polymeric microemulsion using self-consistent
field theory, we can still predict its approximate location in the
phase diagram. Since part of our motivation for studying the
ternary polymer blends lies in finding the optimal copolymer
characteristics for the formation of such microemulsions, we
will be paying particular attention to the ordered structures with
low copolymer content.

Now let us go back to Figure 2 where we have included the
locus of points indicating the lamellar phase, which coexists
with the two disordered phases, forøABNh ) 4 and different
values ofR. This line crosses the Scott’s and the spinodal lines
at the Lifshitz point and identifies the minimal copolymer
content at which an ordered structure may still be observed (we
note that atRA ) RB, f ) 0.5, andφAh ) φBh, only lamellar
ordered structures are present). We see that decreasing the value
of R, or increasing the size of copolymer chains, extends the
region of stability of the lamellar phase to smallerφc. Thus,
from the thermodynamic point of view, the longer copolymer
chains are more favorable for the formation of microemulsions.

Figure 4 shows the Gibbs triangle for a polymer blend with
øABNh ) 3.3 andR ) 0.3. The incompatibility parameterøABN
) 11, is larger than its critical value for the order-disorder
transition in the pure copolymer melt. Hence the lamellar phase
is present atφc ) 1, and there is no continuous order-disorder
transition. In many other aspects this diagram is very similar to

Figure 3. Gibbs triangle for the A/B/AB blend withøABNh ) 4 andR
) 0.5. “L”, “H”, and “D” indicate the regions of stability of the lamellar,
hexagonal, and disordered phases. The triangular regions of three-phase
coexistence are separated by the two-phase regions; “2p” marks the
largest of the two-phase regions between the A-rich and B-rich
homogeneous phases. Note that the pure copolymer is found in the
disordered state, whereas the ordered structures appear through a critical
point at some smallerφc.

RL )
xøABNh - 2

2
(48)

Figure 4. Gibbs triangle for the A/B/AB blend withøABNh ) 3.3 and
R ) 0.3. These blend parameters correspond to the region in theR vs
φc diagram (cf. Figure 2) which lies far below the Lifshitz point, hence
we have also included the bcc phases. Note that the pure copolymer is
found in the lamellar phase and there is no critical point associated
with the ordered structures. (“L” is lamellar, “H” is hexagonal, “D” is
disordered, and “2p” is liquid-liquid coexistence.)
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that shown in Figure 3, except that it also includes the bcc
phases. The Gibbs triangle for these values of parameters has
already been calculated in ref 27; here, we have recalculated it
with a much greater precision, 150 basis functions instead of
50, which has enabled us to get rid of some small artifacts in
the bcc phase boundaries.

We have also checked the limits of stability of the lamellar
phase for a highly immiscible pair of homopolymers A and B
with øABNh ) 10. The correspondingR vsφc diagram is shown
in Figure 5. As compared to the diagram in Figure 2, the present
Lifshitz point is shifted toward much higher values ofφc ) 0.8
andR ) x2. There are two other significant differencies from
the diagram shown in Figure 2. First, the line which corresponds
to the coexistence of the lamellar phase and the two disordered
phases, does not go through the Lifshitz point. Instead it crosses
the spinodal below the Lifshitz point, where it also meets the
line which represents the coexistence of three disordered phases
(this line indicates the disordered phase with the highest
copolymer content). We note that although in this case the
Lifshitz point does not have any physical meaning, it can still
be defined formally as a crossing point of the spinodal and the
Scott’s lines. In contrast to Figure 2, the area just below such
a “hidden” Lifshitz point is no longer occupied by the lamellar
phase but by the coexistence region of three different disordered
phases. This three-phase coexistence region, corresponding to
the first-order transition into A-rich and B-rich liquids, is also
present above the “hidden” Lifshitz point, where it takes up
the place of the continuous transition shown by the Scott’s line
in Figure 2.

Another significant feature of the diagram in Figure 5 is the
existence of the first-order transition between two lamellar
phases, one of which is more swollen than the other, i.e., it has
a lower copolymer content and rather large value ofd. (The
first-order transition between two symmetric lamellar phases
in an A/B/AB blend was first calculated in ref 36. Earlier studies
assigned this region in the phase diagram to another first-
order transition, between a symmetric and two asymmetic
lamellar phases.35) Though the coexistence region associated

with this transition is extremely shallow, lying betweenR )
1.055 andR ) 1.067, it is responsible for a prominent intrusion
of the lamellar phase in the area of small copolymer concentra-
tions, whenR < 1. Thus, from a purely thermodynamic point
of view, sufficienly long AB diblock copolymers can serve as
effective compatibilizers for a pair of strongly segregated
homopolymers A and B. However, as we mentioned earlier,
very long copolymer chains are expected to have large reptation
times which may hinder their even distribution at the A/B
interface.

3.3. Balanced A/B/AC Blends.Let us now consider some
A/B/AC polymer blends, where species C is attracted to B. Our
choice oføij is restricted by eq 43 which ensures that, if one
takes into account only homogeneous phases, the phase behavior
of a ternary blend does not depend on the particular kind of
species C. Specifically, the Lifshitz point, as well as the Scott’s
line to which it belongs, depend only on the value oføABNh.
We stress that the latter statements are valid only ifRA ) RB

andf ) 0.5swhich is the case for all blends studied here, except
for two. The spinodal lines shift to lower copolymer concentra-
tions when the absolute value oføBCNh is increased andøABNh

is kept constant, but only very insignificantly as all these lines
have to cross at the same Lifshitz point. Most of the results
presented here are forøABNh ) 4. The corresponding Gibbs
triangles are calculated for moderately segregated blends, hence
we take into account only the lamellar and hexagonal ordered
structures. We expect that the two bcc phases will occupy fairly
small regions in the phase space, situated on the sides of the
respective hexagonal phases, but will not change the phase
diagrams in any principal way.

Figure 6a shows the Gibbs triangle for the A/B/AC blend
characterized byR ) 0.5 andøABNh ) 4, øACNh ) 3, andøBCNh

) - 1. This diagram should be compared with its direct
A/B/AB analogue, shown in Figure 3. First, the critical point
no longer belongs to theφAh ) φBh isopleth but is shifted toward
higher concentrations of B. We will see that, in general, the
ordered structures occupy larger areas on the B-rich side of the
Gibbs trianglesthis is a result of an easier penetration of
homopolymers B inside the copolymer microdomains, due to
the attraction between B and C. At the same time, the ordered
structures in Figure 6a are observed at copolymer concentrations
that are similar to those in Figure 3. This indicates that the
system is more sensitive to the changes inøAB or R rather than
in øBC, given of course that such changes satisfy the balance
condition (43). Another interesting feature of Figure 6a is the
presence of two hexagonal phases atφAh ) φBh, one of them
with an A-rich matrix and the higher copolymer content than
the lamellar phase, and another with a B-rich matrix and rather
low φc. Though it seems obvious that the hexagonal phases
should appear for the blend compositions far from theφAh )
φBh isopleth, it is quite remarkable to observe these phases for
a blend which is symmetric in all other ways except for the
negative value oføBC. To explain the origin of the first of these
hexagonal phases, we make the following argument. At high
copolymer concentrationsφc, not all of the copolymer chains
are localized at the A/B interface but many of them are dissolved
inside the A-rich and B-rich domains. At the same time, the
average concentration of B in the B-rich cylinders of the
hexagonal phase is higher than that in the B-rich lamellae of
the lamellar phase. This can be easily understood since the
cylinders occupy less than half of the available space but are
expected to accommodate 50% of the total homopolymer
content. Such high concentration of B inside the cylinders, along
with a rather high copolymer concentration, produce a large

Figure 5. R vs φc diagram for the compositionally symmetric
A/B/AB blends with øABNh ) 10. The Lifshitz point (full circle) is
found inside the region of three-phase coexistence (“3p”) and, therefore,
does not correspond to any special physical point. The dotted sections
of the Scott’s and spinodal lines are included in the same three-phase
region. The solid line on the right of the Scott’s line indicates one of
the three coexisting homogeneous phases (“D”), which has the highest
copolymer content andφAh ) φBh. The very shallow trough in the
boundary of the lamellar phase (“L”) is the coexistence region of two
different lamellar phases, one of which is more swollen than the other.
Associated with this first-order transition, is a significant extension of
the lamellar phase to low copolymer concentrations.
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number of favorable BC contacts which make the hexagonal
phase energetically more stable. Parts a and b of Figure 7 show
the density profiles for the stable hexagonal and metastable
lamellar phases (in the phase region considered) that support
our conclusions. At the same time, when the copolymer
concentrationφc is low, the copolymer chains accumulate at
the A/B interface, as illustrated in Figure 7, parts c and d. In
this case the attraction between B and C draws the B chains
toward the interface, so that the number of favorable BC contacts
can be increased. The hexagonal phase with the B-rich matrix
should therefore be stable, as it allows to accommodate more
B near the interface while keeping the total density constant.
We note that such a hexagonal phase is characterized by
interfaces of very low curvature, which can be seen from the
density profiles in Figure 7d. These density profiles (unlike those
shown in Figure 7b) are nearly symmetric with respect to an
interface, and in fact resemble the lamellar density profiles in
Figure 7c. Furthermore, the interfaces between A-rich and B-rich
domains in a largely swollen hexagonal phase are barely
interacting and can therefore fluctuate easily without disturbing
each other. These fluctuations may hide, to a large extent, the
low intrinsic curvature of the hexagonal phase.

In Figure 6a the region of stability of the hexagonal phase
with the B-rich matrix takes the form of a very narrow channel.
It is also a largely swollen phase with the periodD having a
value of approximately 18 copolymer sizes, as compared to a
value of about 6 copolymer sizes near the critical point. We
expect that this channel will be rather unstable in the presence
of thermal fluctuations which may well transform it into a
bicontinuous microemulsion. We have also discovered that it

is very sensitive to small deviations off from the value 0.5.
(Such deviations are unavoidable in real, experimental blends
since different chemical structures of the two blocks affectf in
intricate ways.) This is demonstrated in Figure 6, parts b and c,
which shows the Gibbs triangles for the same values oføijNh

andR, but for f ) 0.48 andf ) 0.52. We see that forf e 0.48
the channel of the hexagonal phase becomes more developed,
whereas forf g 0.52 it disappears completely. Remember that
the curvature of the cylindrical domains of the B-rich hexagonal
phase inside the channel is very low and, as discussed in section
3.1, this curvature may vanish entirely for somef > 0.5, which
would justify the absence of the hexagonal channel forf g 0.52.
Yet, increasingf corrects only some selected parts of the phase
diagram while the rest of it becomes even more asymmetrics
in particular, the critical point and the microphase regions are
shifted to the B-rich side of the Gibbs triangle. We also note
that the ordered structures are observed at slightly lower
copolymer concentrations in the blend withf ) 0.5, than in
the two other blends. The reason is that changing the value of
f effectively leads to the violation of the condition for a bal-
anced surfactant, given in eq 43 and derived forf ) 0.5. Thus,
although the balance criterion was initially derived for homo-
geneous phases, it ensures that mixing occurs at the lowest
copolymer concentration also when the microphases are taken
into account.

Decreasing the value ofR, i.e., moving away from the Lifshitz
point, leads to a vast expansion of the ordered structures and
consequently, to the disappearance of the critical point. This is
illustrated in Figure 8 for slightly different values of the
interaction parameters than those studied above, that areR )

Figure 6. Gibbs triangles for the A/B/AC blends withøABNh ) 4, øACNh ) 3, øBCNh ) - 1, andR ) 0.5. Different length ratios of copolymer
blocks are considered, namely: (a)f ) 0.5, (b) f ) 0.48 and (c)f ) 0.52. In (a), the small region of stability of the B-rich gyroid phase (“G”) is
found between the lamellar phase and the hexagonal phase with the B-rich matrix. The two stars in the same figure indicate the blend compositions
for the density profiles in Figure 7. (“L” is lamellar, “H” is hexagonal, “D” is disordered, and “2p” is liquid-liquid coexistence.)
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0.3 andøABNh ) 4.5, øACNh ) 3.3, andøBCNh ) - 1.2. This
diagram is a direct analogue of the symmetric diagram shown
in Figure 4. We observe the same main features as in the
previous diagrams, except that the hexagonal phase with the
A-rich matrix is no longer stable on theφAh ) φBh isopleth.

However, at low copolymer concentrations, there is still a narrow
channel of the hexagonal phase with the B-rich matrix. We see
that it reaches as far as theφAh ) φBh isopleth, also when the
bcc phase is taken into consideration. Unfortunately, we were
not able to complete the calculation of the bcc phase in the
central part of the Gibbs triangle, as it gets very swollen and
more than 600 basis functions are required to calculate its
boundaries. Because of a rather strong attraction between B and
C in the present case, it is the bcc phase with the B-rich matrix
which (out of all other ordered phases) remains stable at the
lowest copolymer concentrations and forms the region of three-
phase coexistence together with the A-rich and B-rich disordered
phases.

The phase behavior (excluding the bcc phases) of the
A/B/AC blends, withøABNh ) 4, øACNh ) 3, andøBCNh )
- 1, is summarized in Figure 9, which shows theφAh ) φBh

cut through the Gibbs triangles for different values ofR. To
facilitate the comparison, we have also included in Figure 9
the lamellar boundary for the A/B/AB blend with the same value
of øABNh ) 4. We see that for a certain range ofR, the hexagonal
channel of an A/B/AC blend is stable at lower copolymer
concentrations than the lamellar phase of the corresponding
A/B/AB blend. This decrease inφc is rather small, and in fact,
it changes to the opposite effect whenR < 0.27.

Figure 7. Φi(x) density profiles for the two blends indicated with the stars in Figure 6a. (For the hexagonal phases we takey ) 0.) Shown are the
density profiles (a) in the metastable lamellar phase with the higher copolymer content, (b) in the stable hexagonal phase with the A-rich matrix,
(c) in the metastable lamellar phase with the lower copolymer content, and (d) in the stable hexagonal phase with the B-rich matrix. The dotted
curves are forΦB(x) + ΦC(x), and the vertical dotted lines mark the A/B interface.

Figure 8. Gibbs triangle for the A/B/AC blend withøABNh ) 4.5 and
øBCNh ) - 1.2; all other parameters and designations are those in Figure
4. The calculation of the B-rich bcc phase could not be completed due
to the computational difficulties. We see that the channel of the B-rich
hexagonal phase remains stable also in highly segregated blends.
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Figure 10 shows a similar diagram but forøACNh ) 3.5 and
øBCNh ) - 0.5. The attraction between B and C is not very
strong in this case; hence it takes longer copolymer chains for
the hexagonal channel to appear. However, once there, this
channel extends to lower copolymer concentrations than for
the blends withøBCNh ) - 1. Since we associate the hex-
agonal phase inside the channel with a polymeric microemul-
sion, we conclude that very strong attractions between B and
C are actually not favorable for the formation of such micro-
emulsions.

We observed a qualitatively different phase behavior for the
highly segregated blends withøABNh ) 10. The corresponding,
R vs φc, phase diagram is shown in Figure 11 forøACNh ) 7.5

andøBCNh ) - 2.5. The channel of the hexagonal phase at low
concentrationsφc is absent in this case, even far below the
Lifshitz point (we have checked this for allR g 0.5). The
absence of the hexagonal channel is also illustrated in Figure
12 which shows the Gibbs triangle forR ) 1. We see that the
B-rich hexagonal phase has a principally different shape than
for the blends studied above and, in fact, does not extend to
low copolymer concentrations near theφAh ) φBh isopleth. Thus,
even if this hexagonal phase were observed atφAh ) φBh for
someR < 0.5, it would still have a high copolymer content of
about 30-40% and therefore would not be such a good
candidate for the formation of microemulsions. We also see from
Figures 11 and 12 that the bottom boundary of the lamellar
phase recedes to much higher copolymer concentrations than
in the respective A/B/AB blends. In general, the lamellar phase
covers a fairly short section of theφAh ) φBh isopleth, which is

Figure 9. R vs φc diagram for the compositionally symmetric
A/B/AC blends withøABNh ) 4, øACNh ) 3, andøBCNh ) - 1. Since
eq 43 is satisfied, the Lifshitz point (full circle) is identical to that in
the reference A/B/AB system (cf. Figure 2). The dashed line shows
the lamellar boundary in the same A/B/AB system. Interestingly we
observe two different hexagonal phases in this compositionally sym-
metric system, one of which is the highly swollen phase with the
B-rich matrix. Regions of coexistence of the lamellar (“L”) and
hexagonal (“H”) phases are indicated by “L-H”. The two-phase and
three-phase coexistence regions which involve one or more homo-
geneous phase are combined for simplicity in one regionsmarked “2p
and 3p”.

Figure 10. R vs φc diagram for the compositionally symmetric
A/B/AC blends withøABNh ) 4, øACNh ) 3.5, andøBCNh ) - 0.5.
Since the BC attraction is not very strong, it takes fairly long copolymer
chains for the hexagonal channel to appear. However it extends to lower
copolymer concentrations than the channel in Figure 9 (see also the
phase nomenclature in Figure 9).

Figure 11. R vs φc diagram for the compositionally symmetric
A/B/AC blends withøABNh ) 10, øACNh ) 7.5, andøBCNh ) - 2.5.
The dashed line follows the contours of the lamellar phase (“L”) in
the reference A/B/AB system (cf. Figure 5). The region of coexistence
of three homogeneous phases is missing from this diagram, so that the
boundaries of the ordered structures go through the Lifshitz point (full
circle). The origins of the two singularities, observed in these
boundaries, are explained in the main text. The dotted section of the
spinodal line is included inside the two-phase region (“H-D”) which
separates the hexagonal phase with the A-rich matrix (“H”) from the
disordered phase (“D”). Note the absence of the hexagonal phase with
the B-rich matrix at low copolymer concentrations.

Figure 12. Gibbs triangle for the A/B/AC blend with the same
interaction parameters as in Figure 11 andR ) 1. This diagram is highly
asymmetric due to the strong attraction between B and C. The hexagonal
phase with the B-rich matrix extends to low copolymer concentrations
near theφAh ) 0 side of the Gibbs triangle, in contrast to Figures 6
and 8 where it occurs in the vicinity of theφAh ) φBh isopleth. (“L” is
lamellar, “H” is hexagonal, “D” is disordered, and “2p” is liquid-
liquid coexistence.)
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a result of very strong attractions between B and C. Our initial
incentive for choosing a large absolute value oføBCNh was to
stabilize at low copolymer concentrations the channel of the
B-rich hexagonal phase. However, the side effect of stabilizing
the hexagonal phase (with the A-rich matrix) at high copolymer
concentrations turned out to be stronger than the desired effect.
This latter hexagonal phase covers a relatively large section of
theφAh ) φBh isopleth and extends all the way up to theφAh )
0 side of the Gibbs triangle. ForøABNh ) 10, we see a strong
first-order transition between the hexagonal and disordered
phases, accompanied by a wide region of the two-phase
coexistence (Figure 11)swhereas in the case oføABNh ) 4, it
is a very weak first-order transition such that the lines of the
two coexisting phases cannot be distinguished from the spinodal
line (see Figures 9 and 10).

The two singularities seen in the lamellar boundaries in Figure
11, are the terminal points of the lines separating the regions
of two-phase and three-phase coexistence. We did not calculate
these lines, since they do not provide additional information
on the ordered structures and would require the construction of
the full Gibbs triangle for each value ofR. To explain the origin
of these singularities, we note that the area occupied by the
lamellar phase in Figure 11 shrinks whenR approaches its value
at the Lifshitz point. In Figure 12, this shrinkage is followed
by a shift of the two singular points in the lamellar phase
boundaryswhich are also the corners of the corresponding three-
phase trianglessto the B-rich part of the Gibbs triangle. The
singularities in Figure 11 are given by the values ofR when
these points touch theφAh ) φBh isopleth. At larger values of
R, the isopleth is crossed by the section of the lamellar phase
boundary which corresponds to the first-order transition to the
A-rich homogeneous phase and not, as in Figure 12, to either
of the two hexagonal phases. Hence, a sharp change of direction
is observed in the boundaries in Figure 11.

Finally, we note that the three-liquid-phase coexistence region
is missing from the diagram in Figure 11 and therefore the
regions of stability of the ordered phases proceed all the way
up to the Lifshitz point. Thus, in the vicinity of the Lifshitz
point, the AC diblock copolymers are more effective com-
patibilizers than their AB counterparts; whereas we observe
the opposite effect for smaller values ofR. Note that this is a
purely thermodynamic picture which takes into account only
the stabilizing properties of different copolymers at the inter-
face, but disregards their kinetic abilities to reach this inter-
face.

4. Conclusions and Discussion

We have studied the phase behavior of balanced A/B/AC
polymer blends, where C is attracted to B, and compared it with
the phase behavior of the reference A/B/AB blends. In the
special case of compositionally symmetric diblocks and equal
molecular weights of A and B, we can give a quantitative
definition of a balanced surfactant, eq 43, which ensures equal
A-philic and B-philic tendencies of the AC copolymer chains.
For a balanced diblock copolymer, the liquid phase diagrams
of the A/B/AC blends are fully symmetric. However, when the
ordered structures such as lamellar, hexagonal or bcc, are also
taken into account, the attraction between B and C leads to
highly asymmetric phase diagrams.

Our main objective was to find a diblock copolymer
which would facilitate the mixing of a strongly segregated
blend of A and B, while adding the smallest possible amount
of it. For this purpose, we have mainly worked with two values
of the homopolymer incompatibility parameter,øABNh ) 4

and øABNh ) 10, both corresponding to a clearly immiscible
pair of A and B. We have observed a very different phase
behavior in these two cases, both for A/B/AB and A/B/AC
blends. The general tendency observed for all blends is that
longer copolymer chains are required to improve the compati-
bilization effect.

In the phase diagrams of the A/B/AC blends withøABNh )
4, we have discovered a narrow channel of the hexagonal phase
with the B-rich matrix, crossing the line of symmetric blend
compositions. This channel is observed at copolymer concentra-
tions φc which are only slightly lower than the minimal
copolymer content in the reference A/B/AB lamellar phase.
However, the free energy of the hexagonal phase inside the
channel is lower than the free energy of the reference A/B/AB
lamellar phase, if both are calculated for the same blend
compositions. Hence we expect that, in experimental applica-
tions, the A/B/AC blends will be more stable with respect to
macrophase separation than their A/B/AB counterparts, thus
creating a possibility for the formation of bicontinuous structures
with a small copolymer content.

When considering the A/B/AC blends withøABNh ) 10, we
have chosen a rather large value of the interaction parameter
between species B and C,øBCNh ) - 2.5. Such a large absolute
value oføBC is necessary in this case to bring about significant
changes in the corresponding A/B/AB diagrams, and in par-
ticular, to stabilize the channel of the hexagonal phase observed
for øABNh ) 4. However, we find that the hexagonal phase is
not stable for symmetric blend compositions, and in addition,
the lamellar phase recedes to much higher copolymer concentra-
tions than in the A/B/AB blends. Here, the only advantage of
the BC attractions is the presence of ordered structures in the
blends where the copolymer chains are shorter than the homo-
polymers; in the A/B/AB blends such structures are suppressed
by the large regions of three-phase coexistence. Overall,
however, none of the ordered structures in the A/B/AC blends
of symmetric composition are observed for copolymer concen-
trations smaller than approximately 40%, which is not indicative
of a very good compatibilizer. In contrast, in the A/B/AB blends
(with diblocks longer than the homopolymers) the lamellar phase
creates a striking intrusion into the region of small copolymer
concentrations. This vast expansion of the lamellar phase is, in
fact, associated with the first-order transition between two
distinctly different lamellar phases, which did not appear in the
case oføABNh ) 4. Thus, according to our thermodynamic
theory, for smallR the AB diblock copolymers are much more
efficient compatibilizers for a pair of highly immiscible ho-
mopolymers A and B, than the AC diblocks. This seems to
contradict the experimental findings in ref 15, unless the absolute
value of øBC in this experiment is so small that the phase
behavior of the symmetric system is essentially reproduced. On
the other hand, the experimental results of ref 11swhich show
that AC diblock copolymers can be better compatibilizers than
AB diblockssin fact have been obtained for copolymer chains
that are shorter than the homopolymers and therefore support
our results.

Let us now discuss in more detail the possible effects of
thermal fluctuations on the formation of bicontinuous structures
in ternary polymer blends. In the majority of experimental
studies where polymeric microemulsions have been observed,12-14

the compositions of the examined A/B/AB blends were close
to their mean-field Lifshitz compositions. It has also been argued
that, although the Lifshitz points themselves can be very
accurately located by the mean-field theory, the order-disorder
transition temperature near these points is suppressed dramati-
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cally by thermal fluctuations.12,31Therefore, in polymer blends
with nearly Lifshitz compositions, a highly fluctuating disor-
dered phase can exist at very low temperatures, and as confirmed
experimentally,12 this phase has a fully bicontinuous morphol-
ogy. We may also argue that, as the Lifshitz point is approached
along the order-disorder transition line, the spatial periodD
of the lamellar phase at the transition should become very large.
The A/B interfaces in such a lamellar phase can bend easily
without perturbing each other, which could result in the loss of
long-range order and in the formation of a bicontinuous
microemulsion. However, the Lifshitz points can be accessed
experimentally only for moderately segregated A/B/AB poly-
mer blends and, quite conveniently, the Lifshitz compositions
for such blends are characterized by low copolymer concentra-
tions. If the incompatibility between A and B is increased, the
isotropic Lifshitz points move to higher copolymer concen-
trations and, eventually, are absorbed by the coexistence re-
gion of three different homogeneous phases (cf. Figures 2 and
5). On the other hand, the lamellar spacingD can also be-
come large away from the Lifshitz point, for instance, if the
lamellar phase gets swollen by a large amount of relatively short
homopolymer. The latter scenario should apply also for strongly
segregated blends, as verified by the experiment in ref 15,
provided of course that a lamellar phase (or a hexagonal
phase with interfaces of very low curvature) can be stabilized
at low copolymer concentrations. At this point the SCFT can
be used to predict those blend parameters which would favor
the formation of ordered structures with minimal copolymer
content. However, to check the actual stability of a microemul-
sion phase, it is necessary to calculate its free energy taking
into account fluctuations in the interface configurations and
spacings. The polymeric microemulsion will only be stable if
the resulting free energy is sufficiently lower, on the scale of
thermal fluctuations, than the free energy of the macrophase
separated blend.

To summarize our results, we find that largely swollen
lamellar and/or hexagonal phases appear in A/B/AC blends
(where C may equal B) if (i) the copolymers are long rela-
tive to the homopolymers, (ii) the balance condition (43) is
satisfied, and (iii) the absolute value oføBC is not too large.
We conclude that blends with the above characteristics are
the best candidates for the formation of polymeric micro-
emulsions with low copolymer content. In the case of mod-
erate segregation between A and B,øABNh ≈ 4, the A/B/AC
blends are expected to mix slightly better than their A/B/AB
counterparts, and we anticipate that a bicontinuous microemul-
sion may form atφc j 20% (Figure 10). At larger segrega-
tions,øABNh ≈ 10, the phase behavior of A/B/AB and A/B/AC
blends should be very similar for relatively small absolute values
of øBCNh. In this case we expect that a bicontinuous micro-
emulsion may form atφc j 40% (Figure 5). Indeed, we find
that in this region of copolymer concentrations, the free energy
of the lamellar phase is almost independent of its spacingD, or
copolymer contentφc, so that a very large number of different
lamellar phases can coexist at the same time with no free energy
cost. This is in full agreement with the previous SCFT
calculations by Kodama et al.39 who, in the A/B/AB polymer
blend with øABNh ) 8 and R ) 0.5, find a metastable
microemulsion phase atφc ) 40% as well as a marginally stable
lamellar phase atφc < 40%. A definite conclusion of the
SCFT is that a polymeric microemulsion with low copolymer
content will not form if the absolute value oføBCNh is large.
However, in this case, the Lifshitz point is no longer “hidden”
in the A/B/AC blends, as opposed to the symmetric A/B/AB

blends, and it can therefore be accessed experimentally (Fig-
ure 11). Nevertheless, if a microemulsion phase were to form
in the vicinity of this Lifshitz point, it would have a very
high copolymer content and would combine the properties of
all three chemical species, rather than just A and B. Besides,
the required large amounts of copolymer would make it costly
to produce.

In real experiments, the thermodynamic picture described
above will be complicated by the kinetic factors. This will lead
to the existence of an optimal degree of polymerization of
copolymer chains, which will balance their compatibilizing
properties and the ability to reach the interface.40 There has also
been some experimental evidence that the kinetic factors are,
in fact, dependent on the side of the interface to which the
copolymer is introduced.41

Finally, we note that it is only for symmetric blend composi-
tions that either AB or AC may serve as a better compatibilizer,
which depends sensitively on the specific blend parameters.
Whereas, if we wish to dissolve a small amount of A in the
B-rich matrix, then any AC copolymer whose C block is
attracted to B, is clearly a more advantageous choice.

A. Basis Sets for the Lamellar, Hexagonal, bcc, and
Gyroid Phases

The Fourier harmonics for different symmetry groups can
be found in ref 29. For the lamellar, hexagonal, bcc (QIm3hm),
and gyroid (QIa3hd) phases they are, in respective order

whereh, k, l, andn are all integers and the coefficientsC and
C′ are chosen to satisfy the orthonormalization condition in eq
20 of the main text.

B. Random Phase Approximation. We start with the
structure factor matrixĜ of an ideal ternary blend which takes

f (x, h) ) C(h) cos2πhx, h g 0 (49)

f (x, y, h, k) ) C(h, k)(cos
2π(h-k)y

x3
cos2π(h+k)x +

cos
2π(h+2k)y

x3
cos2πhx + cos

2π(k+2h)y

x3
cos2πkx),

h g k g 0 (50)

f (x, y, z, h, k, l) ) C(h, k, l)(cos2πhxcos2πkycos2πlz +
cos2πhxcos2πly cos2πkz+ cos2πhycos2πkzcos2πlx +
cos2πhycos2πlz cos2πkx + cos2πhzcos2πkxcos2πly +

cos2πhzcos2πlx cos2πky), h + k + l ) 2n,
h g k g l g 0 (51)

f′(x, y, z, h, k, l) ) C′(h, k, l) ×
cos

π(h + k + l )
2 {cos 2π(hx + l

4) cos 2π(ky +

h
4) cos 2π(lz + k

4) + cos 2π(kx + h
4) cos 2π(ly +

k
4) cos 2π(hz+ l

4) + cos 2π(lx + k
4) cos 2π(hy +

l
4) cos 2π(kz+ h

4) + cos
π(h + k + l )

2 [cos 2π(hx +

k
4) cos 2π(ly + h

4) cos 2π(kz+ l
4) + cos 2π(kx +

l
4) cos 2π(hy + k

4) cos 2π(lz + h
4) + cos 2π(lx +

h
4) cos 2π(ky + l

4) cos 2π(hz+ k
4)]}, h + k + l ) 2n,

h g k g l g 0 (52)
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the form

where the matrix indicesi ) 1, 2 stand for the copolymer blocks
A/C, andi ) 3, 4 for the homopolymers A/B, respectively. The
individual contributions in eq 53 are

whereQ ) q2RG
2, RG being the copolymer radius of gyration,

andg(f, x) is the Debye function

The definitions of the blend parameters featured in eqs 54-58,
are given in the main text. The structure factor of an interacting
polymer blend is given by

whereĉ is the interaction matrix

The additive constant

whereΦ is the total polymer fraction, is included in order to
fulfill the incompressibility constraint. This is done by taking
the Φ f 1 limit in the final expression forŜ(q) which re-
sults from combining eqs 53, 60, and 61. After some algebra
we find

where

The individual contributions in eq 64 are

whereGAA ≡ GAA
h + GAA

c , and

where

The parametersK1, K2, andK3 are defined in eq 32 of the main
text. The resulting scattering profile from an A/B/AC polymer
blend is given by

whereBB is the column vector describing the contrast. Equations
63, 64, and 79 can be used to fit experimental scattering curves
with four independent fitting parameters:K1N, K2N, K3N, and
RG

2.
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I(q) ) BBTŜ(q)BB (79)

5510 Denesyuk and Gompper Macromolecules, Vol. 39, No. 16, 2006



(4) Kahlweit, M.; Strey, R.Angew. Chem., Int. Ed. Engl.1985, 24, 654.
(5) Gompper, G.; Schick, M. InPhase Transitions and Critical Phenom-

ena; Domb, C., Lebowitz, J., Eds.; Academic Press: London, 1994;
Vol. 16, p 1.

(6) Bates, F. S.; Fredrickson, G. H.Annu. ReV. Phys. Chem.1990, 41,
525.

(7) Kinning, D. J.; Wilney, K. I.; Thomas, E. L.Macromolecules1988,
21, 3502.

(8) Koizumi, S.; Hasegawa, H.; Hashimoto, T.Macromolecules1994, 27,
6532.

(9) Matsen, M. W.Macromolecules1995, 28, 5765.
(10) Matsen, M. W.Phys. ReV. Lett. 1995, 74, 4225.
(11) Chun, S. B.; Han, C. D.Macromolecules1999, 32, 4030.
(12) Bates, F. S.; Maurer, W. W.; Lipic, P. M.; Hillmyer, M. A.; Almdal,

K.; Mortensen, K.; Fredrickson, G. H.; Lodge, T. P.Phys. ReV. Lett.
1997, 79, 849.

(13) Schwahn, D.; Mortensen, K.; Frielinghaus, H.; Almdal, K.; Kielhorn,
L. J. Chem. Phys.2000, 112, 5454.

(14) Morkved, T. L.; Stepanek, P.; Krishnan, K.; Bates, F. S.; Lodge, T.
P. J. Chem. Phys.2001, 114, 7247.

(15) Lee, J. H.; Balsara, N. P.; Krishnamoorti, R.; Jeon, H. S.; Hammouda,
B. Macromolecules2001, 34, 6557.

(16) Lee, J. H.; Ruegg, M. L.; Balsara, N. P.; Zhu, Y.; Gido, S. P.;
Krishnamoorti, R.; Kim, M.Macromolecules2003, 36, 6537.

(17) Reynolds, B. J.; Ruegg, M. L.; Balsara, N. P.; Radke, C. J.; Shaffer,
T. D.; Lin, M. Y.; Shull, K. R.; Lohse, D. J.Macromolecules2004,
37, 7401.

(18) Fayt, R.; Jerome, R.; Teyssie, P.J. Polym. Sci., Part B: Polym. Phys.
1989, 27, 775.

(19) Adedeji, A.; Hudson, S. D.; Jamieson, A. M.Polymer1997, 38, 737.
(20) Müller, M.; Schmid, F.AdV. Polym. Sci.2005, 185, 1.
(21) Matsen, M. W. InSoft Matter; Gompper, G.; Schick, M., Eds.; Wiley-

VCH: Weinheim, Germany, 2005; Vol. 1, p 87.

(22) de Gennes, P. G.; Taupin, C.J. Phys. Chem.1982, 86, 2294.
(23) Morse, D. C.Curr. Opin. Colloid Interface Sci.1997, 2, 365.
(24) Gompper, G.; Kroll, D. M.Phys. ReV. Lett. 1998, 81, 2284.
(25) Reynolds, B. J.; Ruegg, M. L.; Mates, T. E.; Radke, C. J.; Balsara, N.

P. Macromolecules2005, 38, 3872.
(26) Matsen, M. W.; Schick, M.Phys. ReV. Lett. 1994, 72, 2660.
(27) Janert, P. K.; Schick, M.Macromolecules1997, 30, 137.
(28) Grosberg, A. Yu.; Khokhlov, A. R.Statistical Physics of Macromol-

ecules; American Institute of Physics: New York, 1994.
(29) International Tables for X-ray Crystallography; Henry, N. F. M.,

Lonsdale, K., Eds.; Kynoch: Birmingham, U.K., 1969; Vol. 1.
(30) Broseta, D.; Fredrickson, G. H.J. Chem. Phys.1990, 93, 2927.
(31) Fredrickson, G. H.; Bates, F. S.J. Polym. Sci., Part B: Polym. Phys.

1997, 35, 2775.
(32) Scott, R. L.J. Chem. Phys.1949, 17, 279.
(33) Olsson, U.; Wu¨rz, U.; Strey, R.J. Phys. Chem.1993, 97, 4535.
(34) Holyst, R.; Schick, M.J. Chem. Phys.1992, 96, 7728.
(35) Janert, P. K.; Schick, M.Macromolecules1997, 30, 3916.
(36) Naughton, J. R.; Matsen, M. W.Macromolecules2002, 35, 8926.
(37) de Gennes, P. G.Scaling Concepts in Polymer Physics; Cornell

University: Ithaca, NY, 1979.
(38) Hornreich, R. M.; Luban, M.; Shtrikman, S.Phys. ReV. Lett. 1975,

35, 1678.
(39) Kodama, H.; Komura, S.; Tamura, K.Europhys. Lett.2001, 53, 46.
(40) Galloway, J. A.; Jeon, H. K.; Bell, J. R.; Macosko, C. W.Polymer

2005, 46, 183.
(41) Retsos, H.; Anastasiadis, S. H.; Pispas, S.; Mays, J. W.; Hadjichristidis,

N. Macromolecules2004, 37, 524.

MA060364X

Macromolecules, Vol. 39, No. 16, 2006 Mixing A and B Homopolymers 5511


