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ABSTRACT: We use grand-canonical-ensemble self-consistent field theory to study blends of both moderately
and strongly segregated homopolymers A and B with some diblock copolymer AC, where C is attracted to B.
We derive an analytical condition for the FloriHuggins interaction parameters, which describes a balanced
copolymer surfactant AC. We then calculate ternary phase diagrams mainly for blends containing such balanced
surfactants. Among the ordered structures, we generally consider lamellar and hexagonal phases, whereas cubic
phases are included in the calculation when the polymer blends are studied far from the Lifshitz point. The
resulting phase diagrams are highly asymmetric. In particular we show that even a compositionally symmetric
polymer blend-that is with equal concentrations and molecular weights of the two homopolymers and with
identical polymerization degrees of the copolymer bleckgy organize into either of the two distinct hexagonal
structures, as well as into the lamellar structure. One of these hexagonal phases, with the B-rich matrix, has a
rather low content of the stabilizing copolymer and may therefore, under experimental conditions, disorder into
a polymeric microemulsion. Overall we conclude that the AC diblock can provide a slightly more efficient com-
patibilizer than its AB counterpart, provided that the incompatibility of homopolymers A and B is not too strong.

1. Introduction homopolymers to penetrate easily inside the copolymer struc-

The lack of compatibility between different polymers has been tures. (We stress tha_t the conclusion of ref 11 was based on
a longstanding problem for the development of new polymeric polymer blends in which the copolymers_ were shorter than_ the
alloys. In the majority of cases, a binary blend of homopolymers Nomopolymers.) On the other hand high molecular weight
A and B is found in a phase separated state, where the twoCopolymers _have Ia_rge repta_tlpn tlmesdls_advantageous factor
phases are almost pure liquids A and Buch phase behavior ~ from the point of view of mixing dynamics.
is due to the large molecular weights of polymers: even if, on  Notwithstanding these difficulties, the macroscopically ho-
the monomer level, the incompatibility between chemical species mogeneous phase stabilized by a relatively low copolymer
A and B is fairly weak, it may add up to a very strong repulsion content was observed in the A/B/AB mixtutés4 and got the
between complete polymer molecules. However many techno-name of a polymeric microemulsion. Until very recently this
logical applications require mixing of immiscible homopoly- phase could be observed only in blends of slightly immiscible
mers? which can be achieved by adding a “surfactant”. homopolymers A and B. However, in a series of experiments
Traditionally AB diblock copolymers have been used as such published in refs 1517, a polymeric microemulsion was
surfactantdsince their blocks A and B show affinity for the A stabilized in the A/B/AC blend with highly immiscible ho-
and B components, respectively, of the homopolymer mixture. mopolymers A and B, where C was attracted to B. The
This results in the accumulation of copolymer chains at the A/B possibility of enhancing the compatibilization efficiency by
interface which, in turn, reduces its interfacial tension and drives using AC copolymers (instead of their AB counterparts) had
homopolymers to mix. In this way diblock copolymers are very been demostrated in much earlier experimental stddiésvas
similar to nonionic surfactarftshat consist of a hydrophobic  also argued theoreticali§that in the case of attraction between
tail and a hydrophilic head and that are used to stabilize water/ B and C, homopolymers B can swell the copolymer structure
oil microemulsions. even if they are larger than the structure size. The importance

On their own, diblock copolymers form a variety of complex of attractive thermodynamic interactions was also shown
morphological structuréssuch as lamellar, hexagonal, cubic, experimentally in ref 11, where the PS/PI/PSB polymer blend
gyroid, etc., and this phase behavior becomes even more(PS = polystyrene, Pk= polyisoprene, PB= polybutadiene)
complex upon the addition of homopolymérd? In fact this was found in a one-phase state, whereas the PS/PRPSlend
tendency of block copolymers to form ordered structures may was found in a macrophase separated state. We note that the
drive them to segregate in a separate, homopolymer free phaserlory—Huggins parameter for the PPB pair is negative,
The latter will inhibit effective mixing of homopolymers Aand  corresponding to thermodynamic attraction.
B since such mixing requires that diblock copolymers spread
evenly at the A/B interface. Thus, according to ref 11, to achieve
efficient compatibilization the block copolymer must be de-
signed in such a way that its ordedisorder transition temper-
ature is lower than the targeted blending temperature. It is either
that or the copolymer chains must be sufficiently long for

The idea of designing balanced surfactants to stabilize
polymeric microemulsions was discussed in ref 16. The term
“a balanced surfactant” initially refers to nonionic surfactants
used in water/oil mixtures, and whose hydrophobic and hydro-
philic interactions are comparable in strenfjti\/hen applied
to A/B/AC polymer blends, the condition of balance requires
p add University of Marviand. Institute for Phvsical Sci that the A-philic and B-philic tendencies of the AC copolymer
an Treecsr?rrl‘oligyfegg-"egrg"sgsrﬁ&D 28422_2')12,51‘_'““9 or Physical Science gre equal. In ref 16, itis also presented as an analytical condition

for the Flory—Huggins interaction parametggc ~ 0. However,
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symmetric AB copolymer for whiclisc = 0. We have therefore ~ whereas the binary volume interactions of polymer segments
endeavored to study systematically the phase behavior of A/B/are taken into account by the effective interaction parameters
AC polymer blends and to compare it with that of A/B/AB cj, where i, j= A, B, C. The grand canonical partition function
blends. In what follows we assume that C is attracted to B, in of such a system reads

agreement with experimental work, although we consider both

small and large values of this attraction and introduce our own, o o o ZWz 7R
analytical criterion for a balanced surfactant. The large number Z = — X
of thermodynamic as well as blend composition parameters =0 rig=0 nic=0Ma ! Ng! N ¢!
results in a very complex phase behavior of ternary polymer 3 dr . 2
blends. In particular, we show that not only the chemical fl‘l Dr, (s) exgd —— [**d x
composition of copolymer, but also its relative length with va=1 2NI2 0 ds
respect to that of homopolymers, have a drastic influence on dr, \2
the copolymer compatibilizing efficiency. Furthermore, we find f |—| Dr, (S) exd ——— (8 s( ) %
that the answer to the question whether AB or AC is a better ALY 2NI2 ds
compatibilizer depends strongly on the degree of incompatibility e 2
between homopolymers A and B. We use the grand-canonical- 1
ensemble self-consistent field theory (SCET20-24which, like fvl_llDr (s) ex _KIZ 0 3(

AC—

any other mean-field theory, does not take into account any
fluctuations. This theory is therefore not suitable for the G dr, .
description of a microemulsion phase since bicontinuous mi- ex _zEf_‘Di(r)q’j(f) 1)
croemulsions are known to be stabilized by thermal fluctua- I v
tions?2-24 However, in ternary polymer blends the SCFT results wherez, = expum/ksT) is the fugacity of polymer chains of
have been found to be in good agreement with the experimentaltypem, v is the reference volume, aids the statistical segment
measurements of a lamellar phEsand of copolymer adsorption  length which is taken to be the same for all species. i)
at the interface between immiscible homopolyn¥éri par- stands for the dimensionless microscopic density of species i,
ticular, SCFT can be used to determine the minimal copolymer resulting from a given set of polymer trajectorigg(s), r.,(s),
content needed for A/B/AC blends to remain single phase. This I,.(S), and the integration in eq 1 is performed over all such
in turn can be used as a criterion for judging the copolymer sets. The number of interaction parameters in eq 1 can be
compatibilizing efficiency, as well as for predicting the phase reduced since the self-consistent field equations include only
regions where polymeric microemulsions may exist. the linear combinations

The outline of this paper is as follows. In section 2, we give c c
a brief introduction to grand-canonical-ensemble self-consistent Xas = Cag — JAA BB
field theory and derive SCF equations for A/B/AC mixtures. 2 2

To look for solutions which correspond to periodic structures, Ces  Ccc
we rewrite these equations in the basis function representation Xec=Csc— 5 — &5
. : . i : : ; 2 2
with the basis functions being essentially Fourier harmonics of
required symmetry. In section 3.1 we present the derivation of . G Cec 5
an analytical expression for a balanced surfactant, and in sections Xac=Cc ™5 T (2)

3.2 and 3.3, we compare our numerical results for A/B/AB and

balanced A/B/AC blends. The structures that we include in the so-called FloryHuggins parameters, whereas the remaining
consideration are mainly lamellar and hexagonal, although bcc dependence ooaa, Ces, andccc appears only in the additive
phases are added in those phase diagrams which correspond teonstants to the chemical potentials and effective fields. If, in
strong segregation (as clearly indicated by the absence of criticaladdition, we require incompressibility of the polymer melt, the
points in these diagrams). The grand-canonical-ensemble SCFTfugacity zsc can be eliminated from the self-consistent field
can also predict the stability of cocontinuous structures such asequations by introducing the new parametefs= za(zac)

the gyroid phasé® However we find that the gyroid phase andz = zs(zac)~%e. Thus, the phase behavior of an incompress-
occupies only minor regions in the ternary phase diagrams, andible ternary blend can be characterized in terms of only two
we generally do not consider it in this paper. In section 4, we independent parametes, andz, and eq 1 takes the form
draw our final conclusions with regard to whether AB or AC is

a better compatibilizer, depending on the degree of incompat- e e zMz
ibility between A and B. z=3 ——x
na=0 ng=0 nAC=0nA! nB! nAC!

2. Theory . dr G

In this section, we generalize the self-consistent field theory f |_| Dr, (S) ex __2 0 d ds x
developed in refs 9 and 27 for binary A/AB and ternary A=l 2NI ;
A/B/AB polymer blends. ap dr B

We consider a ternary blend of homopolymer chains A and f |_| DrvB(S) ex T SJo ds x
B of polymerization indicestaN andogN, respectively, and of ve 2NI i
copolymer chains AC with an A block of polymerization degree fhe 1
fN and a C block of polymerization degree A f)N. In the f I_l Dr, (s) ex __2 o 3(
grand canonical ensemble the number of chains of each type, vac=1 2NI
Na, N, OF Nac, is not fixed but regulated by the chemical
potentialsua, us, anduac. We apply the model of an ideal Zx“f fI)(r)(I) N 3

Gaussian chain to describe the flexibility of polymer chains, =]
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Following the standard proceduf&ye insert in eq 3 the identity

1= fDCIJA(r)D<I>B(r)DCDC(r)DWA(r)DWB(r)DWC(r) X
expW,(@, — p) + Wy(®g — D) + We(@c — P)]

where the real function®i(r) and the imaginary functions
Wi(r) are independent of the specific polymer configurations,
unlike the microscopic densitieb;(r). Performing in eq 3 the
summations ovena, ng, andnac, we find
zZ0 f DD, (r)DDg(r)DD (r)DW, (r)DWg(r)DW(r) x

exp(— SH{ @, Dy, P, Wy, W, W) (4)

wherefs = 1/kgT andF is the free energy functional
— NuopF =2Q, +2,Q + Qpc t+ fdr[q)A(r)WA(r) +

Dp(NWa(r) + D(r)We(r) — xagNPA(r)Pg(r) —
XecNPe(N)P(r) — xacNPA)D(r)] (5)

In the above equatior,, are the partition functions of single
polymer chains subjected to the external fieWs, Ws, and
We,

Qn=

Qm d m
V{fDrm(s) exp( quzj; ds[ "n(S )} JDra(9) x
Am d m
ex%_zsl2 [ S[ r (S)] — [ dswn[rm(S)]],

m=A,B (6)

Qac =

drac®3|
V[fDrAC(s) exp{ Izjé s[ )] JDrac(s) x
d
- Zslz fd s[ Crcl )] — JldsWA[rac(9)] —

ffldsW:[rAc(s)l} )

whereV is the system volume. A more efficient way of obtaining
the partition function®),, as compared to the direct calculation
of the path integrals in eqs 6 and 7, is from the end-to-end
distance distributiongm(r, s) of single polymer chains, which
are found as the solutions to the following diffusion equati®ns

9y NI?
B_SA = ?AQA Wpada, 0<s<a, (8)
90 NI?
3_SB= 6Aq Wgdg, O<s<oag 9
NI?
3ch AqAC W,iOac, 0 <s<f,
0s NI (10)

2
Ach Welac, f<s<1

whereqm(r, 0) = 1 for all types of chains. It is straightforward
to check that th&, calculated fromgy, via

Qu= fdrqA(r!aA)1 Q= fdrqB(r’aB)’
Que = [ drauc(r, 1) (12)

are identical to those calculated from eqs 6 and 7.
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The self-consistent field theory amounts to approximating the
exact free energys = — T In Z, whereZ is given by eq 4, by
the value of the free energy functional at its saddle point. Here
it is essential to take into account the incompressibility con-
straint, which can be done by subtracting the tgion &(r)(®a
+ &g + &¢c — 1) from eq 5. The saddle point is therefore
determined as a solution to the following set of variational
equations:

0Qn  9Qac

Pa= " Zw, T W, (12)
9Qg
Cp=— 25w, (13)
9Qnc
(I)C - aWC (14)
W, = 2asNPg + xacNPc + £ (15)
Wp = 2agNPp + x5 NP + & (16)
Wi = yacNP, + ygcNPg + & a7
P, + P+ D=1 (18)

We stress that although formally the integration in eq 4 is
performed over imaginary fields, the saddle point of the free
energy functional, as obtained by solving eqs-18, is real. It

is therefore only at this stage that we may suggest Wiat

Wz, andWc play the role of the physical mean fields, produced
by all particles (polymer segments) in the system to act upon a
particle of a given species.

The first step in solving the variational eqs 128 is to
calculate the partition functior@y,. For a periodic ordered phase
this can be done most efficiently if we expand all functions of
the position vector in an orthonormal basis set of Laplacian
eigenfunctionsfi(r/D), where D is the length of the spatial
period?® These basis functions are found as a solution to

Af, = — A, (29)
which should possess the symmetry of the phase considered
and satisfy

Jdrfi(nf(r) = Vo, (20)

Additionally, we orderf; in such a way thatl; is a
nondecreasing series. In this paper, we will be considering the
structures of four different symmetrietamellar, hexagonal,
bcce, and gyroig-which are described by the basis sets given in
Appendix A. Equations 810 can now be solved exactly for
the amplitudesd,(s), dg(s), and du(s) of the end-to-end
distance distributions, defined as

. r
ga(r, s ZIZQIA(S)fi(B) (21)
Gt 9 =3 (s (é) (22)
. r
Oac(r, 9) ZZQLC(S)fi (B) (23)

We find
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da(s) = [expA9)]; (24)
05(9) = [exp@9)];; (25)

[exp(AS)]il’ s<f,

%el® =\ 3 [exp@s — 1), lexpdf )], s> f (26)
J

where the matriced, B, C are given by
A
Aij = __6 Zruk\/\lk
ﬂi
Bij = _;5"‘ - Zrijk\/\"é

A
C,= ——a Zr”kw‘ (27)

Here W5, W5, and WE are the amplitudes of the effective
fields, defined in full analogy with eqs 2123, d? = 6D?/NI? is
the dimensionless period of an ordered structure, and

Ty = & /o SOROR0) (28)

Now that gy(s), gg(s), dac(S) are known, the next step is to
rewrite the variational eqs 218 in such a way that they form

a closed set of equations for the amplitudes of the effective
fields. We find

90," 00,11 A .
— (@) _ e M) _ Ky (W — Wh) +
oW, W,
Ka(W — W) + KoycNoy, (29)
wﬁ KW — W) + Ko(W — W) +
B

KyacNdy; (30)

ﬁqg;wﬂ Ky(Wy — W) + K(W — W) +

C

KaxasNoy (31)

where ¥ = KlXACN + KZXBCN + KSXABN and

Ki=2Xac ~ Xas ~ XBc
K2 = XBc — Xac ~ Xns
Ks = Xas ~ XBc ~ XaC (32)

Usually egs 29-31 are solved for a set of different length scales
d, and in a final step the free energy is minimized with respect
to d. However, it provides a much faster algorithm if the free
energy is minimized with respect that the stage of deriving
all other variational equations. This will add just one extra
equation

e (1)

od 0

g, L
2 Oa (OLA)+

8qu(aB)
od 2 +

5 (33)

to the system of an already very large number of equations.
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And it is straightforward to see that both approaches should

give identical results. o
Once egs 2931 and 33 are solved with respectw),, W,

W, andd, the amplitudes of the polymer segment densities

can be calculated from

o = anl(aA) B 8QA01(1) (34)
A A W,
_ a0
P, = —zz—qgv(v%) (35)
B
_ A (1
oL=— Oac (1) (36)

MW,
and the free energy of a periodic (or liquid) phase is given by

—NupF = Zlqu(aA) + ZZqu(aB) + c]Acl(]-) +

Z[CDIAWA + DWWy + O — 2agND P —

I
ZBcNPEPL — 1acNPLP] (37)

In general, there can be more than one solution to the variational
equations, corresponding to metastable phases. It is therefore
important to look for the equilibrium phase, which has the lowest
free energy among all other metastable phases, to construct the
phase diagram. The SCFT algorithm described above requires
that we know the symmetry of potential equilibrium phases a
priori. We base our choice of symmetries on the results for the
phase behavior of binary A/ABand ternary A/B/AB’ polymer
blends, where the dominant lamellar, hexagonal and bcc phases
have been found. Other more complex phases such as gyroid,
double-diamond, and hexagonally perforated lamellar structures,
have also been examined for the binary A/AB bleb&ince,
generally, such structures occupy fairly small regions in the
phase space, we leave them out in our calculations (the gyroid
phase is included in one of the diagrams presented below). Once
an equilibrium phase of certain symmetry has been found at
least for one set of blend parameters and any blend composition,
its field amplitudes can then be used as an initial condition when
looking for the same phase for slightly different blend param-
eters and/or blend compositions, and so on. This way we always
track the ordered phases from those of the pure diblock
copolymer melt whose phase behavior is well established.
Occasionally the algorithm may still converge into a metastable
phase which, in most cases, can be detected immediately due
to a substantially higher free energy of such phases. It is then
necessary to take smaller steps when moving in the blend
parameter space.

The Fourier coefficients for each physical quantity form an
infinite series which has to be truncated, and this produces
some numerical errors. In our calculations, we choose the
number of basis functions such that the phase boundaries are
determined with less than 1% error. For the highly swollen
hexagonal phases this often requires 250 basis functions; we
have also made an attempt to calculate a swollen bcc phase
with 600 functions, which is the maximum number we can
manage computationally.

3. Results and Discussion

3.1. The Formula for a Balanced Surfactant. We are
primarily interested in the phase behavior of polymer blends
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with ygc negative. It is quite clear though thatyic is negative 29-31 result in a very simple relationship betwegg, and
and large, that is, if the attraction between species B and C is ¢gn
very strong, the copolymer chains will be found mainly in the

B-rich phase. We show now that there exists an optimal value 1, %en 1, Pan
of ysc for which the A-philic and B-philic tendencies of the (@en = PantaeN = Q_BInE N Q_AInE (45)
AC chains balance each other, thus causing these chains to locate
at the A/B interface. To obtain analytical results, we additionally assume that=
For this purpose let us consider only the homogeneous phasesgg. In this case, the coexistence between two homogeneous
In this case, the Fourier harmonics witk: 2 are zero for all phases requires = z. If z7 = z, any solutionpanl, ¢anl to eq
the physical quantities, and eqs-226 reduce to 45 has a twin solutiogan? = ¢gnl, ¢sn? = ¢anl. According to
. L egs 41 and 44, both solutions have the same free energy and
0 (0,) = expl= oW, Y correspond, therefore, to the coexisting phases. The resulting
1 1 equation for the coexistence line,
Os (o) = exp(— agWg")
h
Oac'(0ac) = expl- W, = (1 - W] (38) & = noot() (46)
Substituting these expressions in eqs-36 and introducing  where h = aayasN, depends solely on the homopolymer
the homopolymer densitiesa, and ¢gp, such that incompatibility parameteh.
1 Thus, eq 43 ensures that the coexistence curve of the A-rich
Dy = pn T F(1— Ppn — b1 and B-rich homogeneous phases of the A/B/AC blend is
1 identical to the (symmetric) coexistence curve of the A/B/AB
Dy = Pgy, blend, described by the same valueggN, aa = og andf =
0.53% As illustrated in Figure 1, a significant deviation from eq
D¢ = (1= N1~ pan — Fer) (39) 43 causes the two coexisting liquid phases of the A/B/AC blend
. to be rather asymmetric with respect to the copolymer concen-
we find tration. We therefore view eq 43 as the formula for a balanced
1 ¢ surfactant-it is different from and less restrictive than the
WA1= _ A criterion suggested in ref 16, which jgc ~ 0. The latter
Op Z0p criterion follows from the requirement that the interfaces
1 @ between A-rich and B-rich domains in a microstructure are flat
WBl = pn rather than curved, which is an important factor if one aims at
Oy Z0p a bicontinuous microemulsion. Correspondingly, our results
1[¢ ¢ show that takingrgc < O drives the regions of stability of the
WCl == | A IN(1 — dan — Par) (40) hexagonal phase with the B-rich matrix to expand at the cost
1-flay za, of the lamellar regions. A possible way to “flatten” the interfaces

) ) ) in such a hexagonal phase would be to increase the lértjth
We can now rewrite the free energy given by eq 37 in terms of {ha copolymer block A. This possibility is considered in section

dan and den, 3.3 where we present some numerical results fer0.5. The
o P P P idea of suppressing the interfacial curvature in asymmetric
NuBF = —jn—2n 4 78 280 4 polymer blends by choosirfg= 0.5 has already been discussed
Op Z00€  Og Z0gE in ref 31. Therein an analytical expression for the valué ief
1— épn — Pen given which, in A/B/AB blends withoa = as, is predicted to
(1= ¢an = bgn) I———— + U (41) correspond to a vanishing spontaneous curvature in the vicinity

of the Scott’s 1iné? of critical blend compositions. We note in
whereU is the energy of pair interactions between different passing that the balance criterion (eq 43) has been derived

species, strictly for f = 0.5, and in this particular case, it seems to
represent the most general definition of a balanced system.
U = xaeNggn[dan + (1 — dan — dpr)] + However, it would be very interesting to develop this criterion
*ecNDen(1 — H(L — dan — Par) + further in order to keep the coexistence curves symmetric also
whenf = 0.5.

In any case, it makes sense to consider the question of

XacN@ = DL = dan — Pep)dan + (1 — dan — der)] (42)
. : Flaruggi interface curvature in application to microemulsions only if the
Equations 41 and 42 are equivalent to the ggins formation of interfaces is at all possible at low copolymer

expression for the free energy in the grand canonical ensemble. . N )
if vF\)/e now assumed = 1, angy 9 content-and this ability is strongly influenced by the balance

condition (43). As shown in Figure 1, rather than simply keeping
Yac = Xag + Yac (43) the coexistence curves symmetric, eq 43 also ensures that mixing
occurs at the lowest copolymer concentration for all blend
then the interaction energy takes the following quadratic form, ~ compositions and, in particular, fgnn = ¢gn. Thus, violating
the balance condition effectively increases the incompatibility
ZasN o XscN 5 degree of the two homopolymers, which will most likely still
~72 A=) +T(1_ &) (44) hold when the microstructures are taken into account. We
believe therefore that if eq 43 is fulfilled, the copolymer content
where& = ¢an + ¢dgnh andny = ¢an — ¢sn. For the same values  required to keep the polymer blend single phase will be minimal.
of f = Y, and yac given by eq 43, the self-consistent eqs For any given pair of homopolymers, this copolymer content

U
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Figure 1. Curves of coexistence of the A-rich and B-rich homogeneous phases in the A/B/AC blendgaiith= 3, yasNn = 4, 0 = 0.5,f =

0.5, and (a)scNh = — 4 or (b) xscNn = 2. As indicated by nonhorizontal tie-lines, significant deviations from eq 43 in either direction lead to
coexisting phases which are highly asymmetric with respect to the copolymer content. The same dotted line in both figures shows the entirely
symmetric coexistence curve fgecN, = — 1 (the corresponding horizontal tie-lines are not shown). The one-phase and two-phase regions are
marked by “D” (disordered phase) and “2p”, respectively.

1.0

can be decreased further by tuning eitjpgs or yac, whichever
of the two we choose as an independent variable. We appreciate
of course that in real experiments these parameters are not 08
independent and therefore usually change simultaneously. ’ 2p
We also note that the balance condition (43) does not depend
on the polymerization degrees of either copolymers or homo-
polymers. This is connected to the fact that, similar to eq 46
which is independent of the length ratiq eq 43 has been
derived ignoring any copolymer microstructures. In fact, such
microstructures do not form if the copolymer chains are shorter ' L
than a certain threshold length, in which case only the overall 1 3p
concentration of copolymer (but not its polymerization degree) 0.2 i . ' ] ' , , . '
determines whether the blend is mixed or macrophase separated. 0.0 0.2 0.4 0.6 0.8 1.0
Since the idea of eq 43 is to minimize the copolymer content ¢c
required to m'lx A a“‘?' B .When S,UCh short copolymer chains Figure 2. a vs ¢. diagram for the compositionally symmetric
are added, this equation is also independent of the copolymera/B/AB blends withyasN, = 4. The vertical line represents the Scott's
molecular weight. Of course, a more complex balance condition line which ends at the Lifshitz point (full circle). The lamellar phase
could probably be derived which would also take into account (‘L"), appearing below the Lifshitz point, is bounded by the spinodal

: : . line on the right and, on the left, by the line of the first-order transitions
the microstructures formed by long copolymer chains and which into the coexisting A-rich and B-rich homogeneous (or disordered)

would, therefore, depend on the length ratioHowever, an  phases. The one-phase, two-phase and three-phase regions which
important advantage of eq 4&part from it being strictly valid involve one or more homogeneous phases are marked by “D”, “2p”,

for short copolymer chainsis its very simple form. and “3p”, respectively.

In this paper we consider polymer blends satisfying eq 43. ] ] ] )
This means that at low copolymer concentrationdien a boundaries of single phase regions in thes ¢. plane, where
macrophase separation into homogeneous A-rich and B-rich®ciS thg copolym_er concentration. The incentive for constructing
phases takes placghe phase diagrams are symmetric with Such diagrams is to be able to say how much copolymer of
respect to thepan = ¢en isopleth. We note that this does not What length we should add in the system, to mix a pair of
imply that the ordered phases too are symmetric at higher Nomopolymers with a given degree of incompatibility.
copolymer concentrations. A similar situation is encountered A diagram of the second type is shown in Figure 2 for blends
in water/oil mixtures stabilized by balanced nonionic surfactants, With xaeNn = 4, whereN, = oN is the homopolymer degree
wherein highly asymmetric lamellar phases have been fééind. ©f polymerization. Such a value of the incompatibility parameter

3.2. A/BIAB Blends. The phase behavior of the A/B/AB ~ COrTesponds to a pair of strongly immiscible homopolymers A
ternary polymer blends has been studied in great detail by meannd B (we recall that the critical point of mixing for the binary
of both analytical theod3*and self-consistent field calcula- "oMOPolymer blend is given byasNn = 2). The addition of
tions27.3536 Here we present just a few diagrams, illustrating COPOlymer chains to a phase-separated blend of A and B will
the main aspects of this phase behavior, that we find helpful in drive these homopolymers to mix and form a uniform liquid
understanding similar diagrams for the A/B/AC mixtures. There Phase, given that the copolymer concentration is higher than
are two types of phase diagrams that we consider in this paper:S°Me critical value’. Thls critical concentration of copolymer is
the first type is the Gibbs triangle, which shows equilibrium 9iven by the Scott's lin&
phases or multiphase regions for some fixed valuegNf aa,

0.6+

2

o, f, and all possible blend compositions. We will only look po=1— (47)

at the systems withun = o = o and, unless indicated XasNh

otherwise, withf = 0.5. The second type of diagrams are the

cuts of the Gibbs triangles along tidgn = ¢gn isopleth ¢an, which is independent of the copolymer molecular weight (the

¢sn are the homopolymer concentrations) for the fixed values vertical line in Figure 2). However, eq 47 does not take into
of yjoN, but with varyingo. In these diagrams, we show the account the formation of ordered structures in the ternary
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AB AB

Figure 3. Gibbs triangle for the A/B/AB blend witlasNy = 4 anda. Figure 4. Gibbs triangle for the A/B/AB blend withiasN, = 3.3 and

=0.5."L", *H", and "D" indicate the regions of stability of the lamellar, "= '3 These blend parameters correspond to the region ia tise
hexagonal, and disordered phases. The triangular regions of three-phas$C diagram (cf. Figure 2) which lies far below the Lifshitz point, hence

coexistence are separated by the two-phase regions; “2p” marks th ; :

. y g e have also included the bcc phases. Note that the pure copolymer is
largest of the two-phase regions between the A-rich and B-rich ¢4 i the lamellar phase and there is no critical point associated
homogeneous phases. Note that the pure copolymer is found in the

h - ~with the order r res. (“L" is lamellar, “H” is h nal, “D" i
disordered state, whereas the ordered structures appear through a cnﬂczﬂ’igortd :rgddir?((jj usztplﬂcitsulziié"quisd 2oeexigt’ence ')S exagonal, IS
point at some smallep. ’ ’

polymer blends. In fact, if the copolymer chains are long enough, & = 0.5. In this diagram we have included only the lamellar
the ternary blend will microphase (rather than macrophase) and hexagonal ordered structures, which emerge via a critical
separate with decreasing the copolymer concentragiomfror point. For small concentrations of copolymer, when its com-
®an = ¢gn this microphase separation occurs continuously patibilizing effect is negligible, the polymer blend macrophase
through the critical point which can be calculated using the separates into an A-rich and a B-rich phase. The triangles in
random phase approximation (RPE)The derivation of RPA Figure 3 bound the regions of three-phase coexistence, in
for A/B/AC blends is contained in Appendix B of this paper. particular, we see a large, centrally placed region of coexistence
For brevity, we will refer to the locus of these critical points, between the lamellar and two disordered phases. The coexisting
which are shown in Figure 2 for different values@fas the ~ lamellar phase has a quite low copolymer content, approximately
spinodal line. We note that the ordetisorder transition,  30%, which is remarkable given the strong incompatibility of
induced by varying the copolymer concentratigg) can only A and B. Of course, the stability of the lamellar phase with
be observed in the A/B/AB blends witpagN < 10.5. This such a low copolymer content is the result of the self-consistent
condition ensures that the pure copolymer is found in the field theory, which does not take into account local concentration
disordered phas®,since the energy gain associated with the fluctuations. We anticipate that, in real polymer blends, this
formation of microdomains, is less significant than the entropy phase may lose its long-range order and transform into a
loss due to the chain stretching. The large stretching of chainsbicontinuous microemulsion. This conclusion is also supported
required in this case is essential to fulfill the incompressibility by the fact that in experimental phase digrafthe micro-
condition in the areas near the microdomain centers. At the sameemulsion phase is always found on the sngallside of the
time, fairly mobile homopolymer chains can easily distribute lamellar phase. Therefore, even if we cannot calculate the
inside a microdomain structure and lower its free energy by properties of a polymeric microemulsion using self-consistent
relieving the stress associated with the incompressibility con- field theory, we can still predict its approximate location in the
straint. Hence, fogagN < 10.5, “diluting” a copolymer melt phase diagram. Since part of our motivation for studying the
with some relatively short homopolymer chains, which on their ternary polymer blends lies in finding the optimal copolymer
own cannot form any ordered phases, actually drives this melt characteristics for the formation of such microemulsions, we
to order. In the opposite case ghgN > 10.5, the pure will be paying particular attention to the ordered structures with
symmetric copolymer is found in the lamellar phase, which is low copolymer content.

also the equilibrium phase f@r, < 1. In Figure 2 the order Now let us go back to Figure 2 where we have included the
disorder transition of the pure copolymer melt is marked as the locus of points indicating the lamellar phase, which coexists
crossing point of the spinodal line and tiie = 1 axis at with the two disordered phases, fpkeNn = 4 and different
o~0.38. The crossing point of the spinodal line with the Scott’'s values ofa. This line crosses the Scott’s and the spinodal lines
line is referred to as an isotropic Lifshitz poftitand it marks at the Lifshitz point and identifies the minimal copolymer
the onset of ordered structures in a given polymer blend. For content at which an ordered structure may still be observed (we
an A/B/AB polymer blend, the value af at the Lifshitz point note that aton = ap, f = 0.5, andgan = ¢sn, Only lamellar

is given by?° ordered structures are present). We see that decreasing the value
of a, or increasing the size of copolymer chains, extends the
NxasNy — 2 region of stability of the lamellar phase to smaltgy; Thus,
o = 2 (48) from the thermodynamic point of view, the longer copolymer

chains are more favorable for the formation of microemulsions.
whereas the copolymer concentration is found from eq 47. Thus,  Figure 4 shows the Gibbs triangle for a polymer blend with
in the polymer blend withyagNy = 4, we will only be able to %asNh = 3.3 anda. = 0.3. The incompatibility parametgrgN
observe some ordered structures if the copolymer chains are= 11, is larger than its critical value for the ordetisorder
longer thanN = ﬁNh (cf. Figure 2). transition in the pure copolymer melt. Hence the lamellar phase
The formation of ordered structures is illustrated in Figure 3 is present ap. = 1, and there is no continuous oretisorder
which shows a Gibbs triangle for a blend wjtkgNy = 4 and transition. In many other aspects this diagram is very similar to
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with this transition is extremely shallow, lying between=
1.055 andx = 1.067, it is responsible for a prominent intrusion
of the lamellar phase in the area of small copolymer concentra-
tions, whenot < 1. Thus, from a purely thermodynamic point
of view, sufficienly long AB diblock copolymers can serve as
effective compatibilizers for a pair of strongly segregated
homopolymers A and B. However, as we mentioned earlier,
very long copolymer chains are expected to have large reptation
times which may hinder their even distribution at the A/B
interface.

3.3. Balanced A/B/AC Blends.Let us now consider some
A/B/AC polymer blends, where species C is attracted to B. Our
choice ofy; is restricted by eq 43 which ensures that, if one
00 02 04 06 08 10 takes into account only homogeneous phases, the phase behavior

p) of a ternary blend does not depend on the particular kind of
Figure 5. o vs ¢, diagram for tt:e compositionally svmmetric species C. Specifically, the Lifshitz point, as well as the Scott’s
AJBIAB blends with zasN, 10, The Lifshitz point (iull crcle) is e t0 which it belongs, depend only on the valueagNy.

found inside the region of three-phase coexistence (“3p”) and, therefore, W Stress that the latter statements are valid oniyaif= os
does not correspond to any special physical point. The dotted sectionsandf = 0.5—which is the case for all blends studied here, except

of the Scott’s and spinodal lines are included in the same three-phasefor two. The spinodal lines shift to lower copolymer concentra-

region. The solid line on the right of the Scott’s line indicates one of i i
the three coexisting homogeneous phases (“D”), which has the highest'.[IonS when the absolute value pichh is increased angasNn

copolymer content andan = ¢an. The very shallow trough in the 1S kept constant, but only very in§ignifigantly as all these lines
boundary of the lamellar phase (“L”) is the coexistence region of two have to cross at the same Lifshitz point. Most of the results
different lamellar phases, one of which is more swollen than the other. presented here are fgngNy = 4. The corresponding Gibbs
Associated with this first-order transition, is a significant extension of triangles are calculated for moderately segregated blends, hence
the lamellar phase to low copolymer concentrations. we take into account only the lamellar and hexagonal ordered
that shown in Figure 3, except that it also includes the bcc Structures. We expect that the two bee phases will occupy fairly
phases. The Gibbs triangle for these values of parameters ha$™Mall regions in the phase space, situated on the sides of the
already been calculated in ref 27; here, we have recalculated it"®SPective hexagonal phases, but will not change the phase
with a much greater precision, 150 basis functions instead of diagrams in any principal way.
50, which has enabled us to get rid of some small artifacts in ~ Figure 6a shows the Gibbs triangle for the A/B/AC blend
the bcc phase boundaries. characterized by = 0.5 andyagNn = 4, yacNh = 3, andygcNn

We have also checked the limits of stability of the lamellar = — 1. This diagram should be compared with its direct
phase for a highly immiscible pair of homopolymers A and B A/B/AB analogue, shown in Figure 3. First, the critical point
with yagNi = 10. The corresponding vs ¢ diagram is shown no longer belongs to thgan = ¢en isopleth but is shifted toward
in Figure 5. As compared to the diagram in Figure 2, the present higher concentrations of B. We will see that, in general, the
Lifshitz point is shifted toward much higher valuesdf= 0.8 ordered structures occupy larger areas on the B-rich side of the
ando. = v/2. There are two other significant differencies from Gibbs triangle-this is a result of an easier penetration of
the diagram shown in Figure 2. First, the line which corresponds homopolymers B inside the copolymer microdomains, due to
to the coexistence of the lamellar phase and the two disorderedthe attraction between B and C. At the same time, the ordered
phases, does not go through the Lifshitz point. Instead it crossesstructures in Figure 6a are observed at copolymer concentrations
the spinodal below the Lifshitz point, where it also meets the that are similar to those in Figure 3. This indicates that the
line which represents the coexistence of three disordered phasesystem is more sensitive to the changegig or o rather than
(this line indicates the disordered phase with the highest in xsc, given of course that such changes satisfy the balance
copolymer content). We note that although in this case the condition (43). Another interesting feature of Figure 6a is the
Lifshitz point does not have any physical meaning, it can still presence of two hexagonal phases)at = ¢sn, one of them
be defined formally as a crossing point of the spinodal and the with an A-rich matrix and the higher copolymer content than
Scott’s lines. In contrast to Figure 2, the area just below such the lamellar phase, and another with a B-rich matrix and rather
a “hidden” Lifshitz point is no longer occupied by the lamellar low ¢.. Though it seems obvious that the hexagonal phases
phase but by the coexistence region of three different disorderedshould appear for the blend compositions far from ¢hag =
phases. This three-phase coexistence region, corresponding tesn isopleth, it is quite remarkable to observe these phases for
the first-order transition into A-rich and B-rich liquids, is also a blend which is symmetric in all other ways except for the
present above the “hidden” Lifshitz point, where it takes up negative value ofsc. To explain the origin of the first of these
the place of the continuous transition shown by the Scott's line hexagonal phases, we make the following argument. At high
in Figure 2. copolymer concentrationg., not all of the copolymer chains

Another significant feature of the diagram in Figure 5 is the are localized at the A/B interface but many of them are dissolved
existence of the first-order transition between two lamellar inside the A-rich and B-rich domains. At the same time, the
phases, one of which is more swollen than the other, i.e., it hasaverage concentration of B in the B-rich cylinders of the
a lower copolymer content and rather large valuedofThe hexagonal phase is higher than that in the B-rich lamellae of
first-order transition between two symmetric lamellar phases the lamellar phase. This can be easily understood since the
in an A/B/AB blend was first calculated in ref 36. Earlier studies cylinders occupy less than half of the available space but are
assigned this region in the phase diagram to another first- expected to accommodate 50% of the total homopolymer
order transition, between a symmetric and two asymmetic content. Such high concentration of B inside the cylinders, along
lamellar phase®) Though the coexistence region associated with a rather high copolymer concentration, produce a large




Macromolecules, Vol. 39, No. 16, 2006 Mixing A and B Homopolymers 5505

AC

(c)

Figure 6. Gibbs triangles for the A/B/AC blends witphsNn = 4, yacNh = 3, xscNh = — 1, anda. = 0.5. Different length ratios of copolymer

blocks are considered, namely: (ar 0.5, (b)f = 0.48 and (c¥ = 0.52. In (a), the small region of stability of the B-rich gyroid phase (“G”") is

found between the lamellar phase and the hexagonal phase with the B-rich matrix. The two stars in the same figure indicate the blend compositions
for the density profiles in Figure 7. (“L” is lamellar, “H” is hexagonal, “D” is disordered, and “2p” is ligtiguid coexistence.)

number of favorable BC contacts which make the hexagonal is very sensitive to small deviations 6ffrom the value 0.5.
phase energetically more stable. Parts a and b of Figure 7 show(Such deviations are unavoidable in real, experimental blends
the density profiles for the stable hexagonal and metastablesince different chemical structures of the two blocks affent
lamellar phases (in the phase region considered) that supporintricate ways.) This is demonstrated in Figure 6, parts b and c,
our conclusions. At the same time, when the copolymer which shows the Gibbs triangles for the same valueg;;bf,
concentrationp. is low, the copolymer chains accumulate at anda, but forf = 0.48 andf = 0.52. We see that fdr=< 0.48
the A/B interface, as illustrated in Figure 7, parts ¢ and d. In the channel of the hexagonal phase becomes more developed,
this case the attraction between B and C draws the B chainswhereas foif > 0.52 it disappears completely. Remember that
toward the interface, so that the number of favorable BC contactsthe curvature of the cylindrical domains of the B-rich hexagonal
can be increased. The hexagonal phase with the B-rich matrixphase inside the channel is very low and, as discussed in section
should therefore be stable, as it allows to accommodate more3.1, this curvature may vanish entirely for sofrte 0.5, which
B near the interface while keeping the total density constant. would justify the absence of the hexagonal channet f010.52.
We note that such a hexagonal phase is characterized byYet, increasing corrects only some selected parts of the phase
interfaces of very low curvature, which can be seen from the diagram while the rest of it becomes even more asymmetric
density profiles in Figure 7d. These density profiles (unlike those in particular, the critical point and the microphase regions are
shown in Figure 7b) are nearly symmetric with respect to an shifted to the B-rich side of the Gibbs triangle. We also note
interface, and in fact resemble the lamellar density profiles in that the ordered structures are observed at slightly lower
Figure 7c. Furthermore, the interfaces between A-rich and B-rich copolymer concentrations in the blend with= 0.5, than in
domains in a largely swollen hexagonal phase are barely the two other blends. The reason is that changing the value of
interacting and can therefore fluctuate easily without disturbing f effectively leads to the violation of the condition for a bal-
each other. These fluctuations may hide, to a large extent, theanced surfactant, given in eq 43 and derivedffer0.5. Thus,
low intrinsic curvature of the hexagonal phase. although the balance criterion was initially derived for homo-
In Figure 6a the region of stability of the hexagonal phase geneous phases, it ensures that mixing occurs at the lowest
with the B-rich matrix takes the form of a very narrow channel. copolymer concentration also when the microphases are taken
It is also a largely swollen phase with the peribdhaving a into account.
value of approximately 18 copolymer sizes, as compared to a Decreasing the value of, i.e., moving away from the Lifshitz
value of about 6 copolymer sizes near the critical point. We point, leads to a vast expansion of the ordered structures and
expect that this channel will be rather unstable in the presenceconsequently, to the disappearance of the critical point. This is
of thermal fluctuations which may well transform it into a illustrated in Figure 8 for slightly different values of the
bicontinuous microemulsion. We have also discovered that it interaction parameters than those studied above, that are
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x/D ~ x/D
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x/D | x/D
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Figure 7. ®i(x) density profiles for the two blends indicated with the stars in Figure 6a. (For the hexagonal phasesyve tak&hown are the

density profiles (a) in the metastable lamellar phase with the higher copolymer content, (b) in the stable hexagonal phase with the A-rich matrix,
(c) in the metastable lamellar phase with the lower copolymer content, and (d) in the stable hexagonal phase with the B-rich matrix. The dotted
curves are fodg(x) + P(x), and the vertical dotted lines mark the A/B interface.

However, at low copolymer concentrations, there is still a narrow
channel of the hexagonal phase with the B-rich matrix. We see
that it reaches as far as tiign = ¢gn isopleth, also when the
bcc phase is taken into consideration. Unfortunately, we were
not able to complete the calculation of the bcc phase in the
central part of the Gibbs triangle, as it gets very swollen and
more than 600 basis functions are required to calculate its
boundaries. Because of a rather strong attraction between B and
C in the present case, it is the bcc phase with the B-rich matrix
which (out of all other ordered phases) remains stable at the
lowest copolymer concentrations and forms the region of three-
phase coexistence together with the A-rich and B-rich disordered
phases.

The phase behavior (excluding the bcc phases) of the
Figure 8. Gibbs triangle for the A/B/AC blend witjgagNy, = 4.5 and A/B/AC blends, withyagNn = 4, yacNn = 3, andyscNn =
xecNh = — 1.2; all other parameters and designations are those in Figure — 1, is summarized in Figure 9, which shows g = ¢sgn
AL (s W S he e e - ot rough the Giobs tnanglesfor diferent valuescofTo

: y S B} facilitate the comparison, we have also included in Figure 9
hexagonal phase remains stable also in highly segregated blends. the lamellar boundary for the A/B/AB blend with the same value
0.3 andyagNh = 4.5, yacNn = 3.3, andygcN, = — 1.2. This of yasNn = 4. We see that for a certain rangeogfthe hexagonal
diagram is a direct analogue of the symmetric diagram shown channel of an A/B/AC blend is stable at lower copolymer
in Figure 4. We observe the same main features as in theconcentrations than the lamellar phase of the corresponding
previous diagrams, except that the hexagonal phase with theA/B/AB blend. This decrease i is rather small, and in fact,
A-rich matrix is no longer stable on thgan = ¢gn isopleth. it changes to the opposite effect when< 0.27.
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Figure 9. o vs ¢. diagram for the compositionally symmetric
A/B/AC blends withyagNh = 4, yacNh = 3, andyscN» = — 1. Since

eq 43 is satisfied, the Lifshitz point (full circle) is identical to that in
the reference A/B/AB system (cf. Figure 2). The dashed line shows
the lamellar boundary in the same A/B/AB system. Interestingly we
observe two different hexagonal phases in this compositionally sym-
metric system, one of which is the highly swollen phase with the
B-rich matrix. Regions of coexistence of the lamellar (“L”) and
hexagonal (“H") phases are indicated by=“*H”". The two-phase and
three-phase coexistence regions which involve one or more homo-
geneous phase are combined for simplicity in one regioarked “2p

and 3p”.

1.0

0.8+

0.6

0.4

Figure 10. o vs ¢ diagram for the compositionally symmetric
A/B/AC blends WithXABNh =4, XACNh = 3.5, andXBcNh = — 0.5.
Since the BC attraction is not very strong, it takes fairly long copolymer

chains for the hexagonal channel to appear. However it extends to lower
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Figure 11. a vs ¢. diagram for the compositionally symmetric
A/B/AC blends WithXABNh = 101XACNh =175, andXBcNh = —2.5.

The dashed line follows the contours of the lamellar phase (‘L") in
the reference A/B/AB system (cf. Figure 5). The region of coexistence
of three homogeneous phases is missing from this diagram, so that the
boundaries of the ordered structures go through the Lifshitz point (full
circle). The origins of the two singularities, observed in these
boundaries, are explained in the main text. The dotted section of the
spinodal line is included inside the two-phase region-{Tf) which
separates the hexagonal phase with the A-rich matrix (“H”) from the
disordered phase (“D”). Note the absence of the hexagonal phase with
the B-rich matrix at low copolymer concentrations.

Figure 12. Gibbs triangle for the A/B/AC blend with the same
interaction parameters as in Figure 11 arwt 1. This diagram is highly
asymmetric due to the strong attraction between B and C. The hexagonal
phase with the B-rich matrix extends to low copolymer concentrations
near thepan = 0 side of the Gibbs triangle, in contrast to Figures 6
and 8 where it occurs in the vicinity of thi, = ¢sn isopleth. (“L” is
lamellar, “H” is hexagonal, “D” is disordered, and “2p” is liquid
liquid coexistence.)

copolymer concentrations than the channel in Figure 9 (see also theandyscNh = — 2.5. The channel of the hexagonal phase at low

phase nomenclature in Figure 9).

Figure 10 shows a similar diagram but fptcN, = 3.5 and
xecNnh = — 0.5. The attraction between B and C is not very

concentrationsp. is absent in this case, even far below the
Lifshitz point (we have checked this for all = 0.5). The
absence of the hexagonal channel is also illustrated in Figure
12 which shows the Gibbs triangle far= 1. We see that the

strong in this case; hence it takes longer copolymer chains for B-rich hexagonal phase has a principally different shape than
the hexagonal channel to appear. However, once there, thisfor the blends studied above and, in fact, does not extend to

channel extends to lower copolymer concentrations than for
the blends withygcNL = — 1. Since we associate the hex-
agonal phase inside the channel with a polymeric microemul-

low copolymer concentrations near g, = ¢gn isopleth. Thus,
even if this hexagonal phase were observedgat= ¢g, for
somea < 0.5, it would still have a high copolymer content of

sion, we conclude that very strong attractions between B andabout 36-40% and therefore would not be such a good

C are actually not favorable for the formation of such micro-
emulsions.

We observed a qualitatively different phase behavior for the
highly segregated blends wighagN, = 10. The corresponding,
o VS ¢¢, phase diagram is shown in Figure 11 faeNy, = 7.5

candidate for the formation of microemulsions. We also see from
Figures 11 and 12 that the bottom boundary of the lamellar
phase recedes to much higher copolymer concentrations than
in the respective A/B/AB blends. In general, the lamellar phase
covers a fairly short section of thg, = ¢gn isopleth, which is
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a result of very strong attractions between B and C. Our initial andyasNy = 10, both corresponding to a clearly immiscible
incentive for choosing a large absolute valueyeéN, was to pair of A and B. We have observed a very different phase
stabilize at low copolymer concentrations the channel of the behavior in these two cases, both for A/B/AB and A/B/AC
B-rich hexagonal phase. However, the side effect of stabilizing blends. The general tendency observed for all blends is that
the hexagonal phase (with the A-rich matrix) at high copolymer longer copolymer chains are required to improve the compati-
concentrations turned out to be stronger than the desired effectbilization effect.
This latter hexagonal phase covers a relatively large section of | the phase diagrams of the A/B/AC blends witksNy, =
the pan = ¢en isopleth and extends all the way up to e = 4, we have discovered a narrow channel of the hexagonal phase
0 side of the Gibbs triangle. FomgNn = 10, we see a strong  yjith the B-rich matrix, crossing the line of symmetric blend
first-order transition between the hexagonal and disordered compositions. This channel is observed at copolymer concentra-
phases, accompanied by a wide region of the two-phaseong ¢, which are only slightly lower than the minimal
coexistence (Figure 1twhereas in the case ghsNn = 4, it copolymer content in the reference A/B/AB lamellar phase.
is a very weak first-order transition such that the lines of the However, the free energy of the hexagonal phase inside the
two coexisting phases cannot be distinguished from the spinodalchannel is lower than the free energy of the reference A/B/AB
line (see Figures 9 and 10). lamellar phase, if both are calculated for the same blend
The two singularities seen in the lamellar boundaries in Figure compositions. Hence we expect that, in experimental applica-
11, are the terminal points of the lines separating the regionstions, the A/B/AC blends will be more stable with respect to
of two-phase and three-phase coexistence. We did not calculatenacrophase separation than their A/B/AB counterparts, thus
these lines, since they do not provide additional information creating a possibility for the formation of bicontinuous structures
on the ordered structures and would require the construction ofwith a small copolymer content.
the full Gib_bs trian_gle for each value of To explain the_origin When considering the A/B/AC blends wigheNn = 10, we
of these smgul_antl.es, we note that the area OCCUP'ed by thehave chosen a rather large value of the interaction parameter
IameIIar.pha}se n .Flgure 1.1 shrinks Wheapproache.s its value between species B and gscNn, = — 2.5. Such a large absolute
at the L|_fsh|tz point. In I_:lgure 12, _th's _shrlnkage is followed value ofygc is necessary in this case to bring about significant
by a shift Of. the two singular points in the Iamella_r phase changes in the corresponding A/B/AB diagrams, and in par-
boundary—whlch are also the corners of the gorrespondlng three- ticular, to stabilize the channel of the hexagonal phase observed
phase tr'lfangl'estq the B-rich pa.rt of the Gibbs triangle. The for yaeNh = 4. However, we find that the hexagonal phase is
smgulant_les in Figure 11 are given by the valuesoothen not stable for symmetric blend compositions, and in addition,
these points tOL.’Ch thean = den |soplet_h. Al larger values of the lamellar phase recedes to much higher copolymer concentra-
a, the isopleth is crossed by the section of the lamellar phase,[ions than in the A/B/AB blends. Here, the only advantage of
bogndary which corresponds to the first-(_)rde_r transition to_the the BC attractions is the presence of ;)rdered structures in the
A-rich homogeneous phase and not, as in Figure 12, to_e'th_erblends where the copolymer chains are shorter than the homo-
.Of the two he_xagonal phase;. Hgncg, a sharp change of dlreCt'orbolymers; in the A/B/AB blends such structures are suppressed
is observed in the boundaries in Figure 11. by the large regions of three-phase coexistence. Overall,
~ Finally, we note that the three-liquid-phase coexistence region however, none of the ordered structures in the A/B/AC blends
is missing from the diagram in Figure 11 and therefore the ot symmetric composition are observed for copolymer concen-
regions of stability of the ordered phases proceed all the way yrations smaller than approximately 40%, which is not indicative
up to the Lifshitz point. Thus, in the vicinity of the Lifshitz  4f 5 very good compatibilizer. In contrast, in the A/B/AB blends
point, the AC diblock copolymers are more effective com- (;ith diblocks longer than the homopolymers) the lamellar phase
patibilizers than their AB counterparts; whereas we observe creates a striking intrusion into the region of small copolymer
the opposite effect for smaller values @f Note that this is @ ¢oncentrations. This vast expansion of the lamellar phase is, in
purely thermodynamic picture which takes into account only fact, associated with the first-order transition between two
the stabilizing properties of different copolymers at the inter- jstinctly different lamellar phases, which did not appear in the
face, but disregards their kinetic abilities to reach this inter- 550 ofyasNh = 4. Thus, according to our thermodynamic

face. theory, for smalk: the AB diblock copolymers are much more
. . . efficient compatibilizers for a pair of highly immiscible ho-
4. Conclusions and Discussion mopolymers A and B, than the AC diblocks. This seems to

We have studied the phase behavior of balanced A/B/AC contradict the experimental findings in ref 15, unless the absolute
polymer blends, where C is attracted to B, and compared it with value of ygc in this experiment is so small that the phase
the phase behavior of the reference A/B/AB blends. In the behavior of the symmetric system is essentially reproduced. On
special case of compositionally symmetric diblocks and equal the other hand, the experimental results of ref-thich show
molecular weights of A and B, we can give a quantitative that AC diblock copolymers can be better compatibilizers than
definition of a balanced surfactant, eq 43, which ensures equalAB diblocks—in fact have been obtained for copolymer chains
A-philic and B-philic tendencies of the AC copolymer chains. that are shorter than the homopolymers and therefore support
For a balanced diblock copolymer, the liquid phase diagrams our results.
of the A/B/AC blends are fully symmetric. However, whenthe  |et us now discuss in more detail the possible effects of
ordered structures such as lamellar, hexagonal or bcc, are als@hermal fluctuations on the formation of bicontinuous structures
taken into account, the attraction between B and C leads toin ternary polymer blends. In the majority of experimental
highly asymmetric phase diagrams. studies where polymeric microemulsions have been obs&héd,

Our main objective was to find a diblock copolymer the compositions of the examined A/B/AB blends were close
which would facilitate the mixing of a strongly segregated to their mean-field Lifshitz compositions. It has also been argued
blend of A and B, while adding the smallest possible amount that, although the Lifshitz points themselves can be very
of it. For this purpose, we have mainly worked with two values accurately located by the mean-field theory, the ordksorder
of the homopolymer incompatibility parametefagNy, = 4 transition temperature near these points is suppressed dramati-
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cally by thermal fluctuation&*31 Therefore, in polymer blends  blends, and it can therefore be accessed experimentally (Fig-
with nearly Lifshitz compositions, a highly fluctuating disor- ure 11). Nevertheless, if a microemulsion phase were to form
dered phase can exist at very low temperatures, and as confirmedn the vicinity of this Lifshitz point, it would have a very
experimentally? this phase has a fully bicontinuous morphol- high copolymer content and would combine the properties of
ogy. We may also argue that, as the Lifshitz point is approachedall three chemical species, rather than just A and B. Besides,
along the orderdisorder transition line, the spatial peri@l the required large amounts of copolymer would make it costly
of the lamellar phase at the transition should become very large.to produce.

The A/B interfaces in such a lamellar phase can bend easily In real experiments, the thermodynamic picture described
without perturbing each other, which could result in the loss of above will be complicated by the kinetic factors. This will lead
long-range order and in the formation of a bicontinuous to the existence of an optimal degree of polymerization of
microemulsion. However, the Lifshitz points can be accessed copolymer chains, which will balance their compatibilizing
experimentally only for moderately segregated A/B/AB poly- properties and the ability to reach the interf4¢&here has also
mer blends and, quite conveniently, the Lifshitz compositions been some experimental evidence that the kinetic factors are,
for such blends are characterized by low copolymer concentra-in fact, dependent on the side of the interface to which the
tions. If the incompatibility between A and B is increased, the copolymer is introducetf.

isotropic Lifshitz points move to higher copolymer concen-  Finally, we note that it is only for symmetric blend composi-
trations and, eventually, are absorbed by the coexistence re-ions that either AB or AC may serve as a better compatibilizer,
gion of three different homogeneous phases (cf. Figures 2 andwhich depends sensitively on the specific blend parameters.
5). On the other hand, the lamellar spacigcan also be- Whereas, if we wish to dissolve a small amount of A in the
come large away from the Lifshitz point, for instance, if the B-rich matrix, then any AC copolymer whose C block is
lamellar phase gets swollen by a large amount of relatively short attracted to B, is clearly a more advantageous choice.
homopolymer. The latter scenario should apply also for strongly .
segregated blends, as verified by the experiment in ref 15,A' Basis Sets for the Lamellar, Hexagonal, bcc, and
provided of course that a lamellar phase (or a hexagonal Gyroid Phases

phase with interfaces of very low curvature) can be stabilized ~The Fourier harmonics for different symmetry groups can
at low copolymer concentrations. At this point the SCFT can be found in ref 29. For the lamellar, hexagonal, b@ném),

be used to predict those blend parameters which would favorand gyroid Qia3s) phases they are, in respective order

the formation of ordered structures with minimal copolymer

content. However, to check the actual stability of a microemul- f(x, h) = C(h) cos2thx, h>=0 (49)
sion phase, it is necessary to calculate its free energy taking 27(h-K)y

into account fluctuations in the interface configurations and f (X, Y, h, K) = C(h, k)| cos——=—cos2r(h+Kk)x +
spacings. The polymeric microemulsion will only be stable if V3

the resulting free energy is sufficiently lower, on the scale of o 27t(h+2k)yCOSZIhX+ o Zn(k+2h)y0052rkx)
thermal fluctuations, than the free energy of the macrophase V3 V3 '
separated blend. h= k=0 (50)

To summarize our results, we find that largely swollen f(x v, 2 h, k 1) = C(h, k, 1)(cos2thx cos2tky cos2rz +

lamellar and/or hexagonal phases appear in A/B/AC blends cos2rhx cos2rly cos2rkz + cos2rhy cos2rkz cos2rlx -+

fve 10 the homonoymers, (1) the balance condition (43) | COS2AY OS2z C0S2rkx + cos2rhz cos2rkcos2ry +
’ cos2rthzcos2tlx cos2rky), h+k+ 1= 2n,

satisfied, and (iii) the absolute value géc is not too large.
We conclude that blends with the above characteristics are hzk=1=0 (51)
the best candidates for the formation of polymeric micro- f'(x,y, z h, k1) =C'(h,k, I) x

emulsions with low copolymer content. In the case of mod- ath+k+1) |

erate segregation between A and)&sNn ~ 4, the A/B/AC cos————cos ZT(hX-i- Z) cos Zr(ky+

blends are expected to mix slightly better than their A/B/AB h K h

counterparts, and we anticipate that a bicontinuous microemul- —| cos 2r{lz + | + cos 2t{kx+ —| cos 2r{ly +
. : 4 4 4

sion may form atp. < 20% (Figure 10). At larger segrega- K | K

tions,xasNh =~ 10, the phase behavior of A/B/AB and A/B/AC Z) cos 21(hz+ Z) + cos Zr(lx + Z) cos Zr(hy—i-

blends should be very similar for relatively small absolute values hat Kt |

of xscNh. In this case we expect that a bicontinuous micro- |_) cos Zr(kz+ r_‘) + coX ) cos Zr(hx—i-

emulsion may form at. < 40% (Figure 5). Indeed, we find 4 4 2

that in this region of copolymer concentrations, the free energy L‘) cos Zr(ly 4 D) cos 21(kz+ |_) + cos Zr(kx +

of the lamellar phase is almost independent of its spabinoy 4 4 4

copolymer conteng,, so that a very large number of different |_) cos 2t(hy+ |_<) cos 2T(|Z i D) 1 cos Zr(lx i

lamellar phases can coexist at the same time with no free energy 4 4 4

cost. This is in full agreement with the previous SCFT h | k)

calculations by Kodama et &.who, in the A/B/AB polymer Z) cos Zr(ky—i- Z) cos h(hﬂ_ Z,)]} h+k+1=2n,

blend with yAsNp = 8 and o« = 0.5, find a metastable h>k=>1>0 (52)
microemulsion phase &t = 40% as well as a marginally stable

lamellar phase at. < 40%. A definite conclusion of the  whereh, k, |, andn are all integers and the coefficiertsand
SCFT is that a polymeric microemulsion with low copolymer C' are chosen to satisfy the orthonormalization condition in eq
content will not form if the absolute value g&cNs is large. 20 of the main text.

However, in this case, the Lifshitz point is no longer “hidden” B. Random Phase Approximation. We start with the

in the A/B/AC blends, as opposed to the symmetric A/B/AB  structure factor matriG of an ideal ternary blend which takes
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the form
Gy Gac 0 O
. G, G
&)= [ ne e 00 (53)
0 0 GO
0 0 0 Gg

where the matrix indiceis= 1, 2 stand for the copolymer blocks
A/C, andi = 3, 4 for the homopolymers A/B, respectively. The
individual contributions in eq 53 are

NilGQ\A = Pan0a9(1,0,Q)
N"'Gia = 6.9(f, Q)

(54)
(55)

N"'Gpc = %[g(l, Q-9f.Q-gl-fQ] (56)

N"'Gllg = ¢pnas0(1,05Q) (57)

N"Gee = ¢0(1 — f, Q) (58)
whereQ = ?Rs?, Rs being the copolymer radius of gyration,
andg(f, x) is the Debye function

off, ¥) = X%[exp(— ) + fx — 1] (59)

The definitions of the blend parameters featured in egs38}
are given in the main text. The structure factor of an interacting
polymer blend is given by

Sa) = (G ) +e&@) " (60)
wheret is the interaction matrix
Co Xac T G Co Xag 1 Co
6= Xac T Co Co Xac T Co 2ect G 61)
Co Xac T C G Xas T Co
Xae T C Xect G Xae TG G
The additive constant
1

where ® is the total polymer fraction, is included in order to
fulfill the incompressibility constraint. This is done by taking
the @ — 1 limit in the final expression foiS(q) which re-
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G
= Gi — #Cz + Kl (65)
BB GanGccGac
G, + G
s, = AC—CCZ +K, (66)
GAAGCC - GAC
G, +G
=—= M 4K, (67)
GAAGCC - GAC
whereGaa = Gy, + Gy, and
oy, =1 (B + By + y9) (68)
01,= 77_1(— y0 —ed — ey + K,0) (69)
O3 =1"(— O+ €d — KB — K,0) (70)
014= — 011~ 012~ 033 (71)
O33= 8, T S3— 0y~ 203 (72)
O34 =0T 01,103~ 5 (73)
where
Giaa
=—+K 74
¢ Gaa GCC'GACZ ’ "
1
AA
o=-1 +K, (76)
Ggs
G
e=———2 77
GZAGCC - GAC
G 1
n= < —- (78)

GXAGCC - GAC2 GE\A

The parameterk;, K,, andK; are defined in eq 32 of the main
text. The resulting scattering profile from an A/B/AC polymer
blend is given by

I(q) = B'0)B (79)

whereB is the column vector describing the contrast. Equations
63, 64, and 79 can be used to fit experimental scattering curves
with four independent fitting parameter&;N, KzN, KsN, and

2

sults from combining eqgs 53, 60, and 61. After some algebra '

we find
S= o 63
$iS, T 55, 5,8, (63)
where
011 O12 013 O14
5= 01, [s1 18] —[sito —s (64)
013 —[sit 01 033 O34
Oy — % O34 [s; + s

The individual contributions in eq 64 are
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